Вопрос 13. Пересечение плоскости с гранным геометрическим телом и с цилиндром. Построение проекций и натуральной величины наклонного сечения проецирующей плоскостью.
Вопрос 13. Пересечение плоскости с гранным геометрическим телом и с цилиндром. Построение проекций и натуральной величины наклонного сечения проецирующей плоскостью. Сечение гранного тела. Сечение цилиндра.
Если секущая плоскость будет проходить через образующие, то в сечении получим параллельные прямые, если через направляющие, то - окружность. Все остальные сечения цилиндра будут эллипсами. Построение сечения цилиндра фронтально проецирующей плоскостью рассмотрено на рис. 8. 2. Натуральную величину сечения построим по точкам. Отметим на чертеже точки, соответствующие большой АВ и малой CD осям эллипса
Вопрос 14. Наклонные сечения конуса и шара. Построение проекций и натуральной величины наклонного сечения проецирующей плоскостью. Сечение конуса. Если секущая плоскость будет проходить через образующую (прямую), то в сечении получим треугольник, если через направляющую (окружность) - окружность. На рис. 8. 4 выполнен чертеж конуса, и показана секущая плоскость Б - Б, которая пересекает все образующие данного конуса. Следовательно, фигура сечения будет ограничена эллипсом, а отрезок А 2 B 2 является его фронтальной проекцией Натуральную величину сечения можно построить по законам построения эллипса. Для этого на оси х откладываем большую ось эллипса АВ и малую CD. Причем, малая ось эллипса определяется как хорда ( CD ) параллели, делящей пополам фронтальную проекцию сечения.
Сечение шара. Как известно, любое сечение шара плоскостью является кругом. В зависимости от положения секущей плоскости, окружность, ограничивающая фигуру сечения, может спроецироваться в: Так как сечение шара - круг (рис. 8. 7), то построение его натуральной величины сводится к определению радиуса окружности. Участок линии сечения А 3 В 3 является диаметром этой окружности. Поэтому для построений на новую ось х 1 линиями связи переносятся точки О и В, после чего радиусом, равным расстоянию между ними, проводится окружность - граница фигуры сечения А - А.
Билет 15. Построение проекций и натуральной величины наклонного сечения плоскостью общего положения на примере многогранника и конуса. См. билет 13 и 14. Билет 16. Построение точки пересечения прямой с поверхностью вращения. Пересечение многогранника с поверхностью вращения на примере соосных конуса и шестигранной призмы. (зад. 56, 59) Построение точки встречи прямой общего положения с проецирующей поверхностью
Построим точки встречи прямой 1 с поверхностью сферы. Заключим прямую 1 в горизонтально проецирующую плоскость Г ( Г 1 º 1 1). Эта плоскость пересечет сферу по окружности, которая на плоскость П 2 спроецируется в эллипс с большой С 2 D 2 и малой Е 2 F 2 осями. В пересечении фронтальной проекции 1 2 прямой 1 с эллипсом получим А 2 и В 2 -фронтальные проекции искомых точек. Пример построения точек встречи горизонтальной прямой 1 с поверхностью тора. Искомые точки А ( А 1, А 2), B ( В 1, В 2), C ( С 1, С 2), D ( D 1, D 1) найдены при помощи вспомогательной горизонтальной плоскости W ( W 2), которая рассекает поверхность тора по параллелям радиусов О 1 и О 2. Количество точек пересечения прямой с поверхностью в общем случае определяет порядок поверхности. Действительно, тор - поверхность четвертого порядка, и прямая пересекает его поверхность в четырех точках A, B, C, D. В приведенных примерах в качестве вспомогательных плоскостей использовались проецирующие плоскости. Рассмотрим ряд случаев, в которых более целесообразно в качестве вспомогательных плоскостей использовать плоскости общего положения.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|