И потенциальные (топографические) диаграммы
Рассмотрим участок цепи при последовательном соединении активного сопротивления, индуктивности и конденсатора (рис. 7). В схеме протекает синусоидальный ток .
Подставим выражения (15) в уравнение (14). Получим:
Из выражения (16) следует, что напряжение в активном сопротивлении совпадает по фазе с током, напряжение на индуктивности опережает по фазе ток на 90°, напряжение по емкости отстает по фазе от тока на 90°. Запишем уравнение (16) в комплексной форме:
Получим уравнение для комплексов действующих значений токов и напряжений, разделив члены (17) на :
В уравнении (18) отношение комплексного напряжения к комплексному току называют комплексным сопротивлением и обозначают Z:
Точку над Z не ставят, так как ее принято ставить только над комплексными величинами, отображающими синусоидальные функции времени. Как всякое комплексное число Z (19) может быть представлено в показательной или алгебраической форме:
где z – модуль комплексного сопротивления или полное сопротивление цепи; φ – аргумент комплексного сопротивления, – соответственно активное и реактивное сопротивления. Для рассматриваемой схемы (рис. 7) данные величины равны: Φ = arctg , ,
Знак реактивного сопротивления X и аргумента (фазы) φ зависит от соотношения индуктивного и емкостного сопротивлений. При построении векторных диаграмм цепи возможны три режима. 1. Индуктивное сопротивление больше емкостного, величина реактивного сопротивления X и аргумента φ положительны. Цепь носит индуктивный характер. Векторы напряжений на индуктивности и емкости направлены в противоположные стороны, частично компенсируют друг друга. Вектор тока отстает от вектора напряжения на входе схемы (рис. 8).
2. Индуктивное сопротивление меньше емкостного, величина реактивного сопротивления X и аргумента φ отрицательны. Цепь носит емкостный характер. Вектор тока опережает вектор напряжения на входе схемы (рис. 9). 3. Индуктивное и емкостное сопротивления одинаковы. Напряжения на индуктивности и емкости полностью компенсируют друг друга. Ток в цепи совпадает по фазе с входным напряжением. В электрической цепи наступает режим резонанса напряжения (рис. 10), который рассматривается в разделе 5.
Рис. 8 Рис. 9 Рис. 10
Отношение комплексного тока к комплексному напряжению, то есть величину обратную комплексному сопротивлению, называют комплексной проводимостью:
где g, b, y – активная, реактивная и полная проводимости цепи.
Единица комплексной проводимости – сименс (См = Ом -1). Определим ток на входе схемы (см. рис. 11), считая, что на входе подключено синусоидальное напряжение . В соответствии с первым законом Кирхгофа для мгновенных значений токов:
Подставим выражения (25) в уравнение (24):
Из уравнения (26) следует, что ток в ветви с индуктивностью отстает по фазе от напряжения на 90o, ток в ветви с активным сопротивлением совпадает по фазе с напряжением, ток в ветви с емкостью опережает по фазе напряжение на 90o. Запишем уравнение (26) в комплексной форме для действующих значений токов и напряжений с учетом значений проводимостей (23):
При построении векторных диаграмм цепи возможны три режима. 1. Цепь носит емкостный характер. Вектора токов через индуктивность и емкость направлены в противоположные стороны, частично компенсируя друг друга. Вектор тока опережает вектор напряжения на входе схемы, угол φ отрицателен (рис. 12). 2. Цепь носит индуктивный характер. Вектор тока отстает от вектора напряжения на входе схемы, угол φ положителен (рис. 13). 3. Реактивная проводимость равна нулю. Вектора токов через индуктивность и емкость направлены в противоположные стороны, компенсируя друг друга. Ток в цепи совпадает по фазе с входным напряжением. В электрической цепи наступает режим резонанса тока (рис. 14).
Рис. 12 Рис. 13 Рис. 14
Из (21) следует, что модуль комплексного сопротивления можно представить как гипотенузу прямоугольного треугольника, один катет которого равен активному сопротивлению R, другой –реактивному сопротивлению X (рис. 15). Аналогично из (23) модуль комплексной проводимости является гипотенузой прямоугольного треугольника, один катет которого равен активной проводимости g, другой – реактивной проводимости b (рис. 16).
Рис. 15 Рис. 16
Графическая интерпретация связи между модулем полного сопротивления, активным и реактивным сопротивлениями цепи в виде прямоугольного треугольника сопротивлений аналогична графической интерпретации связи между модулем полной проводимости и ее активной и реактивной составляющими. Комплексные уравнения (20) и (22) представляют собой выражения закона Ома в комплексной форме: . Законы Кирхгофа в комплексной форме для действующих значений токов и напряжений формулируются соответственно уравнениям для мгновенных значений (3), (4). Алгебраическая сумма комплексных значений токов в узле равна нулю (первый закон Кирхгофа)
Алгебраическая сумма комплексных значений ЭДС всех источников напряжения в замкнутом контуре равна алгебраической сумме комплексных напряжений на элементах этого контура (второй закон Кирхгофа)
Законы Кирхгофа позволяют решить две важных задачи анализа электрических цепей. Во-первых, их непосредственное применение при записи системы комплексных уравнений цепи в матричной форме и использовании математического пакета Mathcad дает возможность рассчитать без промежуточных преобразований комплексы токов ветвей. Несмотря на избыточность системы уравнений, составленной по законам Кирхгофа, этим методом возможно решение достаточно сложных цепей. Во-вторых, законы Кирхгофа являются средством проверки правильности решения любой цепи и основой для компьютерного построения векторных и потенциальных (векторно-топографических) диаграмм.
Расчет электрических цепей синусоидального тока при наличии в них элементов со взаимоиндуктивной связью имеет ряд особенностей и рассмотрен отдельно в разделе 6.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|