Порядок на сковородке
Если налить на сковороду тонкий слой какой-нибудь вязкой жидкости (например, растительного масла) и нагревать сковороду на огне, поддерживая температуру масляной поверхности постоянной, то при слабом нагреве – малых тепловых потоках – жидкость остается спокойной и неподвижной. Это типичная картина состояния, близкого к равновесному порядку. Если сделать огонь побольше, увеличивая тепловой поток, то через некоторое время – совершенно неожиданно – вся поверхность масла преображается: она разбивается на правильные шестигранные или цилиндрические ячейки. Структура на сковороде становится очень похожей на пчелиные соты. Это замечательное превращение называется явлением Бенара, по имени французского исследователя, одним из первых изучившего конвективную неустойчивость жидкости. Рис. 3. Если и дальше увеличивать тепловой поток, то ячейки разрушаются – происходит переход от порядка к хаосу (П→ Х). Но самое удивительное заключается в том, что при еще больших тепловых потоках наблюдается чередование переходов:
Х→ П→ Х→ П→...! При анализе этого процесса в качестве параметра, который показывает, когда на сковороде будет «порядок» и когда «хаос», то есть определяющего «зону» порядка или хаоса, выбирается так называемый критерий Рэлея, пропорциональный разности температур вверх по слою масла. Этот параметр называют управляющим, поскольку он «управляет» переводом системы из одного состояния в другое. При критических значениях Рэлея (математики называют их точками бифуркации) и наблюдаются переходы «порядок – хаос». Нелинейные уравнения, которыми описывается образование и разрушение структур Бенара, называются уравнениями Лоренца. Они связывают между собой координаты фазового пространства: скорости потоков в слое, температуру и управляющий параметр. Процессы, происходящие в сосуде, могут быть зафиксированы, например, киносъемкой и сопоставлены с результатами вычислительного эксперимента. На рис. 4 показано именно такое сопоставление. Совпадение результатов физического и вычислительного экспериментов поразительно! Но прежде, чем перейти к анализу этих результатов, нам придется еще раз обратиться к фазовому пространству. Рис. 4а.
Рис. 4б. Рис. 4в. Почему фазовое пространство оказалось таким мощным средством для изучения хаоса? Прежде всего потому, что оно позволяет представить поведение нелинейной, «хаотической» системы в наглядной геометрической форме. Так, поведение большинства нелинейных систем в фазовом пространстве определяется некоторой зоной в нем, называемой аттрактором (от английского to attract – притягивать). В эту зону в конечном итоге «притягиваются» траектории, изображающие ход процесса. Рис. 5.
Как выяснили математики, существуют два вида аттракторов: первый связан с неравновесным порядком и отображается в фазовом пространстве точкой («фокус»), либо замкнутой кривой («предельный цикл»), второй – с образованием детерминированного хаоса и отображается ограниченной областью фазового пространства, заполненной непрерывно развивающейся во времени траекторией («странный аттрактор»). Для аттракторов первого вида траектории процесса развиваются следующим образом. Если система устойчива, траектория исходит из начальной точки и заканчивается либо фокусом (устойчивый фокус), либо предельным циклом (устойчивый предельный цикл). Если система неустойчива, траектория начинается либо фокусом (неустойчивый фокус), либо предельным циклом (неустойчивый предельный цикл) и постепенно удаляется от своего аттрактора. Если же процесс отображается «странным аттрактором», то траектория его эволюции начинается из начальной точки и постепенно заполняет некоторую область фазового пространства. Так что переходы «порядок – хаос» в терминах аттракции означают переход от аттрактора первого вида (либо фокус, либо предельный цикл) к аттрактору второго вида («странный аттрактор»). Теперь вернемся к нашей сковородке и посмотрим, как описывается на языке аттракторов явление Бенара. Мы уже говорили, что при увеличении теплового потока зоны порядка и хаоса чередуются. Вот как это происходит. Все начинается с равновесного порядка. При слабом нагреве, когда перепад температуры от сковородки вверх по слою жидкости невелик, в ней почти нет конвективных потоков. И тогда, независимо от того, в каком состоянии «система» – жидкость на сковородке – была вначале (как говорят математики, независимо от начальных условий), в ней сохраняется равновесный порядок. Сделав пламя под сковородкой немного побольше – увеличив подачу тепла, мы увидим, что жидкость начнет постепенно перемешиваться – возникнет конвекция. Нижние слои нагреются и станут легче, а верхние останутся холодными и тяжелыми. Равновесие таких слоев неустойчиво, и поэтому система переходит от равновесного порядка к неравновесному. Немного прибавив огня под сковородкой, мы увидим ячейки Бенара или, как теперь часто говорят, попросту «бенары» (на геометрическом языке фазового пространства этому явлению соответствует аттрактор типа устойчивого фокуса).
Продолжая нагревать жидкость на сковородке, мы вскоре сможем наблюдать разрушение бенаров. Этот процесс напоминает кипение – происходит переход от порядка к хаосу (в фазовом пространстве появился «странный аттрактор»). Рис. 6. Сегодня поиски исследователей – главным образом математиков – направлены на то, чтобы выявить все типы нелинейных уравнений, решение которых приводит к детерминированному хаосу. Активный интерес к нему вызван тем, что одни и те же его закономерности могут проявляться в самых разных природных явлениях и технических процессах: при турбулентности в потоках, неустойчивости электронных и электрических сетей, при взаимодействии видов в живой природе, при химических реакциях и даже, по-видимому, в человеческом обществе. Отсюда следует фундаментальная значимость хаоса – его изучение может привести к созданию мощного математического аппарата, обладающего большой общностью и обширными возможностями для приложений.
Об авторе: Григорий Федорович Мучник – доктор технических наук, специалист в области энергетики, лауреат Государственной премии, заслуженный деятель науки и техники РСФСР. Источники информации: 1. Пригожин И. От существующего к возникающему. М., «Наука», 1985. 2. Хакен Г. Синергетика. Иерархии неустойчивостей в самоорганизующихся системах и устройствах. М., «Мир», 1985. 3. Синай Я. Г. Случайность неслучайного. М.. «Природа», №3, 1981. 4. Ахромеева Т. С., Курдюмов С. П., Малинецкий Г. Г. Парадоксы мира нестационарных структур. М., «Знание», 1985. 5. Мучник Г. Ф. Упорядоченный беспорядок, управляемые неустойчивости. «Химия и жизнь», №5, 1985.
6. Как воспользоваться упорядоченным беспорядком. «Химия и жизнь», №5, 1986. Ранее опубликовано: «Наука и жизнь», №3, 1988. Дата публикации: 12 июня 2001 года Электронная версия: © НиТ. Cтатьи, 1997
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|