Определяем все состояния системы при переходе из начального состояния в конечное состояние . На каждом шаге целевые функции имеют вид: и определено уравнение состояния: Из уравнения Беллмана для по находим оптимальное управление на ом шаге По и определяем состояние системы после го шага: Из уравнения Беллмана для находим оптимальное управление на ом шаге По и определяем состояние системы после го шага: и так далее. Условно этот процесс можно представить в виде:
Задача. Инвестиционная компания планирует вложить средства в четыре проекта. Полная сумма инвестиций составляет 6 млн. рублей. В таблице приведена прогнозируемая доходность проектов для различных объектов инвестиций. Требуется найти наилучший вариант инвестиций, при котором суммарный доход будет максимальным. Предполагается, что прибыльность проектов не зависит от вложений в другие проекты.
Размер
инвестиций
Доходность проектов
1-ый проект
2-ой проект
3-ий проект
4-ый проект
Решение. Целевой функцией задачи является результирующий доход , при условии где - функции дохода го проекта при вложении средств. Зависимость этих функций от объёмов вложений приведены в таблице
Объёмы
вложений
С учётом постановки данную задачу динамического программирования можно разбить на 4 этапа. Каждый этап характеризуется выбором инвестиций в какой то конкретный проект при учёте оптимальных вложений на предыдущих шагах. Математически подобная процедура пошагового выбора имеет вид:
Следовательно, динамическое программирование начинается с первого шага, на котором средства инвестируются в первый проект, и завершается четвёртым шагом, при котором вложения идут в четвёртый проект. Параметр в рекуррентных соотношениях меняется от 0 до 6. Функция , в силу первого из равенств, совпадает с функцией дохода первого проекта и её значения заданы следующей таблицей
Значения функции находим, используя рекуррентное соотношение 2):
1.
2.
3.
4.
5.
6.
7.
Сведём полученные данные для функции в таблицу
Аналогично, используя рекуррентные соотношения 3) и 4) соответственно, находим значения функций . Запишем данные в таблицу
Максимум целевой функции , равный 28, складывается из расчета:
Таким образом, оптимальный план распределения инвестиций имеет вид:
млн. руб.; млн. руб.; млн. руб.
Контрольное задание №4
Предприятие планирует открыть филиалы в Михайловке, Урюпинске и Котельниково, для чего выделяются средства в размере 5 млн. руб.
По расчетам экономистов, каждый филиал при инвестировании в него х тыс. руб. приносит прибыль φi(х) тыс.руб. Эти данные приведены в таблице.
Необходимо выбрать оптимальное распределение выделенных средств между филиалами, обеспечивающее максимальную прибыльность всего проекта.