Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Собственные функции и собственные значения эрмитовых операторов и их свойства. Случаи дискретного и непрерывного спектров




Начнем с дискретного спектра, т.к. ему соответствует квадратично-интегрируемые функции. Задача на собственные функции и собственные значения для дискретного спектра:

(11.1)

-собственные функции

- собственные значения

Так как эрмитов, то его собственные значения вещественны. Рассчитаем среднее . Если речь идет о физической величине, то это волновые функции, описывающие состояние системы. Если речь идет о математическом аппарате, то - это любые функции. Как частный случай рассмотрим , где - собственные функции оператора .

Так как - число, то его можно вынести за знак скалярного произведения, тогда:

- это среднее значение величины в i -ом квантовом состоянии. Так как среднее – вещественно, то и собственные значения вещественны. У эрмитового оператора собственные значения вещественны (все эрмитовы операторы имеют вещественные спектры).

(11.2)

Умножая (11.1) скалярно на слева, получим

(11.3)

Теперь (11.2) умножаем справа на , тогда

(11.4)

Почленно из (11.3) вычтем (11.4):

(11.5)

т.к. - эрмитов (), то . Из (10.5) имеем

(11.6)

Рассмотрим случай невырожденного спектра. Спектр вырожденный, если одному собственному значению соответствует несколько собственных функций. Например:

Невырожденный спектр – все собственные значения различные.

1) Рассмотрим (11.6) при , тогда , .

2) Теперь пусть . В этом случае скалярное произведение . Обычно вводят нормировку .

Тогда случаи 1 и 2 дают условие ортонормированности:

Утверждается, что собственные функции эрмитового оператора с дискретным спектром образуют полную систему функций, т.е. обладают свойством полноты. Это верно для функций квантовой механики. Утверждение означает, что произвольную функцию можно разложить по собственным функциям эрмитового оператора как по базису.

Запишем это разложение:

, (11.7)

где индекс i пробегает по всем значениям, удовлетворяющим задаче (11.1).

Формулу (11.7) следует отличать от принципа суперпозиции

,

где - вес состояния и суммирование ведется по произвольным a=1,…,k. Заметим, что если (модель Юнга с ширмой и электроном), то .

Найдем коэффициенты из (11.7). Умножим скалярно (11.7) на , тогда имеем

Применяя условие ортонормированности, получим:

Тогда из (11.7) получаем

, (11.7/)

Далее

Из (11.7/) также можно получить еще одно соотношение:

- равенство Парсеваля (условие замкнутости).

Теперь рассмотрим случай непрерывного спектра.

У собственной функции индексом является собственное значение. Собственные значения непрерывны, они сплошь заполняют соответствующую числовую ось. В этом случае собственные функции не нормируемы (квадратично не интегрируемы). Используем искусственную операцию – введем понятие собственных дифференциалов, по формуле:

(11.8)

т. е. на числовой оси рассмотрим функции с равным весом на интервале . Собственные дифференциалы (11.8) квадратично-интегрируемы. Через рассмотренные собственные дифференциалы приходим к рассмотрению собственных функций.

Условие ортонормируемости: .

Здесь дает расходящийся интеграл, т. е. равен . Но для собственных дифференциалов имеем:

Собственные функции обладают свойством полноты, т. е. они образуют базис, по которому может быть разложена любая функция:

,

По аналогии с дискретным спектром:

- равенство Парсеваля

§ 12. Операторы координаты , импульса , момента импульса ,
энергии и их свойства

Будем использовать координатное представление ( -представление). Будем рассматривать систему из одной материальной точки. Действие сводитсяк умножению на вектор , т. е. (это определение действия оператора ).

Здесь строго соблюдается последовательность операторов при раскрытии векторного произведения, например, первая компонента:

,

однако для частного случая декартовых координат порядок операторов не существенен.

Оператор энергии или гамильтониан :

,

здесь - оператор кинетической энергии, - оператор потенциальной энергии. Для одной материальной точки гамильтониан имеет вид:

Переменная t – признак внешнего нестационарного поля.

Тут присутствует и , но и одновременно неизмеримы, тогда потенциальная и кинетическая энергия в квантовой механике не могут быть одновременно измеримыми. В квантовой механике существует понятие “энергия частицы”, но порознь вводить энергию нельзя, иначе либо , либо оказываются неизвестными.

Волновое уравнение

Надо сформулировать уравнение функции, которая описывала бы квантово-механическую систему.

Это уравнение было получено Шредингером интуитивным путем. Оно ниоткуда не выводится.

Приведем некоторые соотношения в пользу уравнения Шредингера:

Норма волновой функции:

- вероятность обнаружить динамические переменные в интервале .

Наложим на - условие ее сохранения во времени. - это физическое требование, поскольку , то также функция времени.

На базе ограничения получим некоторые ограничения на .

Обозначим . Мы знаем, что , таким образом . Тогда само скалярное произведение - чисто мнимое число.

Но - число вещественное. Отсюда можно представить

(13.1)

Здесь мнимая единица из соотношения . Т. к. в (*) стоит линейный оператор , то это соотношение удовлетворяет принципу суперпозиции.

Подставим (13.1) в равенство , тогда

- эта величина должна быть чисто вещественной, тогда оператор - эрмитов: .

 

Свойства оператора :

В пределе перехода к классической механике: , то , где S – действие из классической механики. Причем , тогда рассматривая

, (13.2)

где - функция Гамильтона.

В нашем случае , тогда учитывая предельный переход и (13.2), то: .

Получили волновое уравнение:

- нестационарное уравнение Шредингера (волновое уравнение).

 

Каждой системе ставится в соответствие Гамильтониан, решаем с гамильтонианом волновое уравнение Шредингера и получаем волновую функцию, которая определяет эволюцию системы.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...