Ортогональность нормальных колебаний и экстремальные свойства собственных частот
Каждому нормальному колебанию с частотой ws соответствует определенное распределение амплитуд по координатам, или определённая форма колебаний. Формы колебаний, соответствующие разным собственным частотам, ортогональны друг другу. Для того, чтобы показать это, запишем уравнение (8.3) для s -й и r -й форм колебаний:
Умножим скалярно справа первое из этих уравнений на
Если ws ¹ wr, то отсюда
С учётом формул (8.3) и (8.11) получаем также
Соотношения (8.11) и (8.12) называются условием ортогональности s -й и r -й форм нормальных колебаний. Использование условий ортогональности нормальных колебаний даёт возможность получить некоторые соотношения, общие для любых систем с n степенями свободы. Покажем, например, что потенциальная энергия любого собственного колебания равна сумме потенциальных энергий всех собственных колебаний. Потенциальную энергию системы (8.1) в матричной форме можно записать в виде
Подставляя теперь выражение вида (8.10) и учитывая условие ортогональности (8.12), получим
Аналогично с учётом условия ортогональности (8.11) легко показать, что
Выражения (8.13) и (8.14) показывают, что в нормальных координатах и потенциальная, и кинетическая энергия являются диагональными квадратичными формами. Следовательно, систему с п степенями свободы можно представить как набор из п независимых систем с одной степенью свободы. Зададим в момент времени t = 0 произвольное отклонение от положения равновесия системы
Потенциальная и кинетическая энергия системы при этом с учетом формул (8.11) и (8.12) равны
При колебаниях в консервативной системе среднее по времени значение потенциальной энергии равно среднему значению кинетической энергии, т. е.
Расположим собственные частоты в порядке их возрастания:
Если заменить все
Левая часть неравенства (8.17) является функцией амплитуд Cs, т. е. функцией начального распределения амплитуд по степеням свободы. Величина
Этот минимум достигается в том случае, когда все Cs, за исключением C 1, равны нулю. Тогда
Тогда в выражении (8.16) суммирование начинается с s = 2 и самой низкой частотой окажется частота w 2. Приводя рассуждения, аналогичные изложенным выше, получим
Минимум этого выражения достигается при 8.3. Вынужденные колебания в системе с n степенями свободы Для линейных систем справедлив принцип суперпозиции колебаний. Поэтому задача о вынужденных колебаниях в системе под действием любой периодической силы сводится к нахождению вынужденных движений системы в результате действия гармонической силы частоты w. Если рассматриваемая система консервативна, то уравнение её колебаний в матричной форме принимает вид:
Вынужденные колебания системы должны быть гармоникой той же частоты
где
Таким образом, для отыскания выражения для вынужденного колебания в матричной форме необходимо обратить матрицу Обращение матриц больших размеров - сложная задача, поэтому чаще используют другой метод - разлагают искомое решение по собственным колебаниям системы. Для этого амплитудный вектор
Теперь задача сводится к отысканию неизвестных коэффициентов Bs. Внешнюю силу разложим следующим образом:
где fs - коэффициенты разложения. Коэффициенты fs можно найти, используя условие ортогональности (8.12). Умножая (8.23) слева скалярно на
Подставим теперь выражения (8.22) и (8.23) в уравнение (8.21), тогда
Умножим уравнение (8.25) слева на
Отсюда, с помощью формулы (8.22), находим амплитуды вынужденных колебаний:
Из формулы (8.26) видно, что при w ® ws, амплитуда вынужденных колебаний всех координат стремится к бесконечности, т. е. происходит резонансное возрастание амплитуды. Резонанса на частоте ws не будет, если вектор внешней силы ортогонален s -му нормальному колебанию, когда в соответствии с соотношением (8.24) получается fs = 0. При наличии затухания расчёт колебаний для систем с n степенями свободы становится ещё более громоздким. Для диссипативных систем с затуханием типа вязкого трения можно ввести матрицу рассеяния энергии
Собственные колебания, соответствующие
Подставляя (8.28) в (8.27), получим уравнение степени 2 n для определения l
Так как уравнение (8.29) имеет действительные коэффициенты, то все его комплексные корни будут попарно сопряжёнными, т. е.
где ds и ws - вещественные числа. Для диссипативной системы, не содержащей внутренних источников энергии, все ds < 0. Общий вид свободных колебаний:
Для вынужденных колебаний по-прежнему разлагаем силу
Таким образом, при совпадении частоты внешней силы с одной из собственных частот системы наблюдается резонанс. Однако амплитуда вынужденных колебаний при резонансе остается ограниченной, как и при резонансе в диссипативной системе с одной степенью свободы.
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|