Подсчет критерия U Манна-Уитни.
1. Перенести все данные испытуемых на индивидуальные карточки. 2. Пометить карточки испытуемых выборки 1 одним цветом, скажем красным, а все карточки из выборки 2 - другим, например синим. 3. Разложить все карточки в единый ряд по степени нарастания признака, не считаясь с тем, к какой выборке они относятся, как если бы мы работали с одной большой выборкой. 4. Проранжировать значения на карточках, приписывая меньшему значению меньший ранг. Всего рангов получится столько, сколько у нас (n1+п2). 5. Вновь разложить карточки на две группы, ориентируясь на цветные обозначения: красные карточки в один ряд, синие - в другой. 6. Подсчитать сумму рангов отдельно на красных карточках (выборка 1) и на синих карточках (выборка 2). Проверить, совпадает ли общая сумма рангов с расчетной. 7. Определить большую из двух ранговых сумм. 8. Определить значение U по формуле: где n1 - количество испытуемых в выборке 1; n2 - количество испытуемых в выборке 2; Тх - большая из двух ранговых сумм; nх - количество испытуемых в группе с большей суммой рангов. 9. Определить критические значения U по Табл. II Приложения 1. Если Uэмп.>Uкp 005, Но принимается. Если Uэмп ≤ Uкp_005, Но отвергается. Чем меньше значения U, тем достоверность различий выше. Теперь проделаем всю эту работу на материале данного примера. В результате работы по 1-6 шагам алгоритма построим таблицу. Таблица 2.4 Подсчет ранговых сумм по выборкам студентов физического и психологического факультетов
Общая сумма рангов: 165+186=351. Расчетная сумма:
Равенство реальной и расчетной сумм соблюдено. Мы видим, что по уровню невербального интеллекта более "высоким" рядом оказывается выборка студентов-психологов. Именно на эту выборку приходится большая ранговая сумма: 186. Теперь мы готовы сформулировать гипотезы: H0: Группа студентов-психологов не превосходит группу студентов-физиков по уровню невербального интеллекта. Н1: Группа студентов-психологов превосходит группу студентов-физиков по уровню невербального интеллекта. В соответствии со следующим шагом алгоритма определяем эмпирическую величину U: Поскольку в нашем случае п\Фп2, подсчитаем эмпирическую величину U и для второй ранговой суммы (165), подставляя в формулу соответствующее ей пх: Такую проверку рекомендуется производить в некоторых руководствах (Рунион Р., 1982; Greene J., D'Olivera M., 1989). Для сопоставления с критическим значением выбираем меньшую величину U: Uэмп=60. По Табл. II Приложения 1 определяем критические значения для n1 =14, n2=12. Мы помним, что критерий U является одним из двух исключений из общего правила принятия решения о достоверности различий, а именно, мы можем констатировать достоверные различия, если Uэмп ≤ Uкp Построим "ось значимости". Uэмп = 60 Uэмп > Uкp Ответ: H0 принимается. Группа студентов-психологов не превосходит группы студентов-физиков по уровню невербального интеллекта. Обратим внимание на то, что для данного случая критерий Q Розенбаума неприменим, так как размах вариативности в группе физиков шире, чем в группе психологов: и самое высокое, и самое низкое значение невербального интеллекта приходится на группу физиков (см. Табл. 2.4).
Критерий Крускала-Уоллиса (общая характеристика, ограничения, примеры использования). Н - критерий Крускала-Уоллиса Назначение критерия Критерий предназначен для оценки различий одновременно между тремя, четырьмя и т.д. выборками по уровню какого-либо признака. Он позволяет установить, что уровень признака изменяется при переходе от группы к группе, но не указывает на направление этих изменений. Описание критерия Критерий Н иногда рассматривается как непараметрический аналог метода дисперсионного однофакторного анализа для несвязных выборок (Тюрин Ю. Н., 1978). Иногда его называют критерием "суммы рангов" (Носенко И.А., 1981). Данный критерий является продолжением критерия U на большее, чем 2, количество сопоставляемых выборок. Все индивидуальные значения ранжируются так, как если бы это была одна большая выборка. Затем все индивидуальные значения возвращаются в свои первоначальные выборки, и мы подсчитываем суммы полученных ими рангов отдельно по каждой выборке. Если различия между выборками случайны, суммы рангов не будут различаться сколько-нибудь существенно, так как высокие и низкие ранги равномерно распределятся между выборками. Но если в одной из выборок будут преобладать низкие значения рангов, в другой - высокие, а в третьей - средние, то критерий Н позволит установить эти различия. Гипотезы H0: Между выборками 1, 2, 3 и т. д. существуют лишь случайные различия по уровню исследуемого признака. Н1: Между выборками 1, 2, 3 и т. д. существуют неслучайные различия по уровню исследуемого признака. Ограничения критерия Н 1. При сопоставлении 3-х выборок допускается, чтобы в одной из них п=3, а двух других n=2. Но при таких численных составах выборок мы сможем установить различия лишь на низшем уровне значимости (р≤ 0,05). Для того, чтобы оказалось возможным диагностировать различия на более высоком уровнем значимости (р5~0,01), необходимо, чтобы в каждой выборке было не менее 3 наблюдений, или чтобы по крайней мере в одной из них было 4 наблюдения, а в двух других - по 2; при этом неважно, в какой именно выборке сколько испытуемых, а важно соотношение 4:2:2.
2. Критические значения критерия Н и соответствующие им уровни значимости приведены в Табл. IV Приложения 1. Таблица предусмотрена только для трех выборок и {n1, n2, n3}≤ 5. При большем количестве выборок и испытуемых в каждой выборке необходимо пользоваться Таблицей критических значений критерия χ2, поскольку критерий Крускала-Уоллиса асимптотически приближается к распределению χ2 (Носенко И.А., 1981; J. Greene, M. D'Olivera, 1982). Количество степеней свободы при этом определяется по формуле: V=c-1 где с - количество сопоставляемых выборок. Пример В эксперименте по исследованию интеллектуальной настойчивости (Е. В. Сидоренко, 1984) 22 испытуемым предъявлялись сначала разрешимые четырехбуквенные, пятибуквенные и шестибуквенные анаграммы, а затем неразрешимые анаграммы, время работы над которыми не ограничивалось. Эксперимент проводился индивидуально с каждым испытуемым. Использовалось 4 комплекта анаграмм. У исследователя возникло впечатление, что над некоторыми неразрешимыми анаграммами испытуемые продолжали работать дольше, чем над другими, и, возможно, необходимо будет делать поправку на то, какая именно неразрешимая анаграмма предъявлялась тому или иному испытуемому. Показатели длительности попыток в решении неразрешимых анаграмм представлены в Табл. 2.5. Все испытуемые были юношами-студентами технического вуза в возрасте от 20 до 22 лет. Можно ли утверждать, что длительность попыток решения каждой из 4 неразрешимых анаграмм примерно одинакова? Таблица 2.5 Показатели длительности попыток решения 4 неразрешимых анаграмм в секундах (7V=22)
Сформулируем гипотезы. H0: 4 группы испытуемых, получившие разные неразрешимые анаграммы, не различаются по длительности попыток их решения. H1: 4 группы испытуемых, получившие разные неразрешимые анаграммы, различаются по длительности попыток их решения. Теперь познакомимся с алгоритмом расчетов.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|