Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Одноканальная СМО с ожиданием.




Рассмотрим простейшую СМО с ожиданием — одноканальную систему (n - 1), в которую поступает поток заявок с интенсивностью λ; и интенсивность обслуживания μ (т. е. в среднем непрерывно занятый канал будет выдавать λ/μ обслуженных заявок в единицу (времени). Заявка, поступившая в момент, когда канал занят, становится в очередь и ожидает обслуживания.

С истема с ограниченной длиной очереди. Предположим сначала, что количество мест в очереди ограничено числом m, т. е. если заявка пришла в момент, когда в очереди уже стоят m заявок, она покидает систему необслуженной. В дальнейшем, устремив m к бесконечности, мы получим характеристики одноканальной СМО без ограничений длины очереди.

Будем нумеровать состояния СМО по числу заявок, находящихся в системе (как обслуживаемых, так и ожидающих обслуживания):

S0 —канал свободен;

S1 —канал занят, очереди нет;

S2 — канал занят, одна заявка стоит в очереди;

Sk —канал занят, k - 1 заявок стоят в очереди;

Sm+1 — канал занят, m заявок стоят в очереди.


 

 

Рис. 5.8. Одноканальная СМО с ожиданием

ГСП показан на рис. 5.8. Все интенсивности потоков событий, переводящих в систему по стрелкам слева направо, равны λ а справа налево — μ. Действительно, по стрелкам слева направо систему переводит поток заявок (как только придет заявка, система переходит в следующее состояние), справа же налево — поток «освобождений» занятого канала, имеющий интенсивность μ (как только будет обслужена очередная заявка, канал либо освободится, либо уменьшится число заявок в очереди).

Изображенная на рис. 5.8 схема представляет собой схему размножения и гибели. Используя общее решение (5.32)—(5.34), напишем выражения для предельных вероятностей состояний (см. также (5.40)):

(5.44)

или с использованием :

(5.45)

 

Последняя строка в (5.45) содержит геометрическую прогрессию с первым членом 1 и знаменателем ρ; откуда получаем:

(5.46)

в связи с чем предельные вероятности принимают вид:

(5.47)

Выражение (5.46) справедливо только при < 1 (при = 1 она дает неопределенность вида 0/0).

Определим характеристики СМО: вероятность отказа , относительную пропускную способность q, абсолютную пропускную способность А, среднюю длину очереди , среднее число заявок, связанных с системой , среднее время ожидания в очереди , среднее время пребывания заявки в СМО

Вероятность отказа. Очевидно, заявка получает отказ только в случае, когда канал занят и все m мест в очереди тоже:

(5.48)

Относительная пропускная способность:

(5.49)

Абсолютная пропускная способность:

Средняя длина очереди. Найдем среднее число заявок, находящихся в очереди, как математическое ожидание дискретной случайной величины R — числа заявок, находящихся в очереди:

С вероятностью в очереди стоит одна заявка, с вероятностью — две заявки, вообще с вероятностью в очереди стоят k - 1 заявок, и т. д., откуда:

(5.50)

Поскольку , сумму в (5.50) можно трактовать как производную по от суммы геометрической прогрессии:

Подставляя данное выражение в (5.50) и используя из (5.47), окончательно получаем:

(5.51)

Среднее число заявок, находящихся в системе. Получим далее формулу для среднего числа заявок, связанных с системой (как стоящих в очереди, так и находящихся на обслуживании). Поскольку , где_ — среднее число заявок, находящихся под обслуживанием, а r известно, то остается определить . Поскольку канал один, число обслуживаемых заявок может равняться 0 (с вероятностью ) или 1 (с вероятностью 1 - ), откуда:

и среднее число заявок, связанных с СМО, равно

(5.52)

Среднее время ожидания заявки в очереди. Обозначим его ; если заявка приходит в систему в какой-то момент времени, то с вероятностью канал обслуживания не будет занят, и ей не придется стоять в очереди (время ожидания равно нулю). С вероятностью она придет в систему во время обслуживания какой-то заявки, но перед ней не будет очереди, и заявка будет ждать начала своего обслуживания в течение времени (среднее время обслуживания одной заявки). С вероятностью в очереди перед рассматриваемой заявкой будет стоять еще одна, и время ожидания в среднем будет равно , и т. д.

Если же k = m + 1, т. е. когда вновь приходящая заявка застает канал обслуживания занятым и m заявок в очереди (вероятность этого ), то в этом случае заявка не становится в очередь (и не обслуживается), поэтому время ожидания равно нулю. Среднее время ожидания будет равно:

если подставить сюда выражения для вероятностей (5.47), получим:

(5.53)

Здесь использованы соотношения (5.50), (5.51) (производная геометрической прогрессии), а также из (5.47). Сравнивая это выражение с (5.51), замечаем, что иначе говоря, среднее время ожидания равно среднему числу заявок в очереди, деленному на интенсивность потока заявок.

(5.54)

Среднее время пребывания заявки в системе. Обозначим матожидание случайной величины — время пребывания заявки в СМО, которое складывается из среднего времени ожидания в очереди и среднего времени обслуживания . Если загрузка системы составляет 100 %, очевидно, , в противном же случае

Отсюда

 

Пример 5.6. Автозаправочная станция (АЗС) представляет собой СМО с одним каналом обслуживания (одной колонкой).

Площадка при станции допускает пребывание в очереди на заправку не более трех машин одновременно (m = 3). Если в очереди уже находятся три машины, очередная машина, прибывшая к станции, в очередь не становится. Поток машин, прибывающих для заправки, имеет интенсивность = 1 (машина в минуту). Процесс заправки продолжается в среднем 1,25 мин.

Определить:

вероятность отказа;

относительную и абсолютную пропускную способности АЗС;

среднее число машин, ожидающих заправки;

среднее число машин, находящихся на АЗС (включая обслуживаемую);

среднее время ожидания машины в очереди;

среднее время пребывания машины на АЗС (включая обслуживание).

иначе говоря, среднее время ожидания равно среднему числу заявок в очереди, деленному на интенсивность потока заявок.

Находим вначале приведенную интенсивность потока заявок:

= 1/1,25 = 0,8; =1/0,8 = 1,25.

По формулам (5.47):

p0 = (1-1.250) / (1-3.05)=0.122 p1 = 1.25*0.122=0.152

p2 =0.152*1.25=0.19 p3 = 0.19*1.25=0.238 p4 =0.238*1.25 =0.296

 

Вероятность отказа 0,296.

Относительная пропускная способность СМО

q=1- =0,704.

Абсолютная пропускная способность СМО

A = = 0,704 машины в мин.

Среднее число машин в очереди находим по формуле (5.51)

т. е. среднее число машин, ожидающих в очереди на заправку, равно 1,56.

Прибавляя к этой величине среднее число машин, находящихся под обслуживанием

получаем среднее число машин, связанных с АЗС.

Среднее время ожидания машины в очереди по формуле (5.54)

Прибавляя к этой величине , получим среднее время, которое машина проводит на АЗС:

Системы с неограниченным ожиданием. В таких системах значение m не ограничено и, следовательно, основные характеристики могут быть получены путем предельного перехода в ранее полученных выражениях (5.44), (5.45) и т. п.

Заметим, что при этом знаменатель в последней формуле (5.45) представляет собой сумму бесконечного числа членов геометрической прогрессии. Эта сумма сходится, когда прогрессия бесконечно убывающая, т. е. при < 1.

Может быть доказано, что < 1 есть условие, при котором в СМО с ожиданием существует предельный установившийся режим, иначе такого режима не существует, и очередь при будет неограниченно возрастать. Поэтому в дальнейшем здесь предполагается, что < 1.

Если , то соотношения (5.47) принимают вид:

(5.55)

При отсутствии ограничений по длине очереди каждая заявка, пришедшая в систему, будет обслужена, поэтому q = 1,

Среднее число заявок в очереди получим из (5.51) при :

Среднее число заявок в системе по формуле (5.52) при

Среднее время ожидания получим из формулы

(5.53) при :

Наконец, среднее время пребывания заявки в СМО есть

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...