Моделирование процесса функционирования централизованной заправочной системы.
Выше указывалось, что процесс заправки ЛА через централизованную заправочную систему представляет собой последовательное изменение числа подготавливаемых к заправке, находящих одновременно под заправкой ЛА и аппаратов, на которых проводятся после заправочные операции, и что система обслуживания ЛА через ЦЗС может быть отнесена к системе массового обслуживания разомкнутого типа с неограниченным ожиданием. Определение параметров, характеризующих процесс обслуживания ЛА в этом случае, осуществляется путем исследования n – канальной системы массового обслуживания, на вход которой поступает простейший поток заявок с интенсивностью формула и интенсивностью обслуживания каждого канала формула: если поступившая заявка застанет свободным хотя бы один канал, она немедленно принимается за обслуживание и обслуживается до конца, в противном случае заявка попадает в очередь с количеством мест в очереди m. Очевидно, что m=0 получается система массового обслуживания с отказами, а при формула – система с ожиданием. Каждая заявка может обслуживаться либо одним каналом – нет взаимопомощи между каналами – либо несколькими свободными каналами – есть взаимопомощь между каналами. Для случая, когда отсутствует взаимопомощь между каналами обслуживания, состояние системы массового обслуживания разомкнутого типа описывается с помощью системы дифференциальных уравнений
(1)
где - вероятность, что в момент времени t система будет находиться в состоянии - в системе k заявок, и они обслуживаются k каналами, очереди нет; - в системе имеется n+l заявок, причем n из них обслуживается и l заявок находится в очереди. Интегрирование этой системы дифференциальных уравнений совместно с нормировочным условием (2)
позволяет найти все вероятные состояния системы массового обслуживания в произвольный момент времени в процессе выхода системы на стационарный режим, т.е. в процессе постановки ЛА на работу. При стационарном режиме работы рассматриваемой системы массового обслуживания системы уравнений (1) превращается в систему алгебраических уравнений вида: (3) Которая решается совместно с нормировочным условием (2) и дает следующие зависимости для определения вероятностей нахождением системы в состояниях формула. Здесь – среднее число заявок, поступающих в рассматриваемую систему за среднее время обслуживания одной заявки одним каналом. Зная вероятные состояния системы в любой момент времени, легко определить все параметры, характеризующие работу системы массового обслуживания. Так, вероятность обслуживания определяется вероятностью того, что к моменту поступления ее на обслуживание, будет свободен хотя бы один канал или одно место в очереди: Pобс= 8.474*10-4 Где – определяется по формуле (5). Далее может быть определено среднее число занятых каналов: Вероятность занятости любого канала в произвольный момент времени определяется по формуле: Где n-количество каналов обслуживания; – среднее число заявок, поступавших в систему за среднее время обслуживания всеми каналами. Вероятность того, что система полностью загружена, равна вероятности того, что в системе заняты все каналы: Среднее время неполной загрузки определяется из выражения Где – - среднее время полной загрузки системы. Среднее число заявок, находящихся в очереди равно Среднее время ожидания заявок в очереди Среднее время нахождения заявки в системе складывается из средних времен ожидания и обслуживания, т.е.
Таким образом, определены основные параметры, характеризующие качество работы централизованной системы заправки при отсутствии взаимопомощи между каналами обслуживания.
В том случае, когда существует взаимопомощь между каналами обслуживания, состояние системы массового обслуживания описывается с помощью системы дифференциальных уравнений вида: В стационарном состоянии, которая превращается в системы алгебраических уравнений: Параметры, характеризующие работу такой системы массового обслуживания, определяются выражениями аналогичными (6-13), в которых вероятности нахождения системы в состояниях находятся путем интегрирования системы уравнений (14). Cсовместно с нормировочным условием (12) для случая постановки ЛА на дежурство и путем решения системы уравнений (1) и (2) для стационарного режима работы централизованной заправочной системы с взаимопомощью между агрегатами обслуживания. В частности, для стационарного режима работы вероятность пребывания системы в j-ом состоянии (j = 0,1,2,3...,k,...,n,...,n+l,..., n+m)находится из выражения:
Где –=0.5 - среднее число заявок, поступающих в систему за среднее время обслуживания всеми каналами.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|