Показатели надежности восстанавливаемых систем
Все состояния системы S можно разделить на подмножества: SK S – подмножество состояний j = , в которых система работоспособна; SM S – подмножество состояний z = , в которых система неработоспособна. S = SK SM, SK SM = 0. 1. Функция готовности Г(t) системы определяет вероятность нахождения системы в работоспособном состоянии в момент t
где Pj(t) – вероятность нахождения системы в работоспособном j -м состоянии; Pz(t) – вероятность нахождения системы в неработоспособном z -м состоянии. 2. Функция простоя П(t) системы
3. Коэффициент готовности kг.с. системы определяется при установившемся режиме эксплуатации (при t ). При t устанавливается предельный стационарный режим, в ходе которого система переходит из состояния в состояние, но вероятности состояний уже не меняются
Коэффициент готовности kг.с. можно рассчитать по системе (2) дифференциальных уравнений, приравнивая нулю их левые части dPi(t)/dt = 0, т.к. Pi = const при t . Тогда система уравнений (2) превращается в систему алгебраических уравнений вида:
и коэффициент готовности:
есть предельное значение функции готовности при установившемся режиме t . 4. Параметр потока отказов системы
где jz – интенсивности (обобщенное обозначение) переходов из работоспособного состояния в неработоспособное. 5. Функция потока отказов
6. Средняя наработка между отказами на интервале t
Примечание: При t , когда Pj(t = ) = Pj() = Pj, средняя наработка между отказами T0= kг.с./ , где () = .
В качестве примера вычисления показателей надежности, рассмотрен восстанавливаемый объект, у которого поток отказов простейший (пуассоновский) с параметром потока
= = 1/ T0, а распределение времени восстановления подчиняется экспоненциальному распределению с интенсивностью восстановления = 1/ TВ, где T0 – средняя наработка между отказами; TВ – среднее время восстановления.
P0(t) – вероятность работоспособного состояния при t; P1(t) – вероятность неработоспособного состояния при t. Система дифференциальных уравнений:
Начальные условия: при t = 0 P0(t = 0) = P0(0) = 1; P1(0) = 0, поскольку состояния S0 и S1 представляют полную группу событий, то
Выражая P0(t) = 1 - P1(t), и подставляя в (7) получается одно дифференциальное уравнение относительно P1 (t):
Решение уравнения (9) производится с использованием преобразования Лапласа. Преобразование Лапласа для вероятностей состояния Pi(t):
т. е. Pi(S) = L{Pi(t)} – изображение вероятности Pi(t). Преобразование Лапласа для производной dPi(t)/dt:
После применения преобразования Лапласа к левой и правой частям уравнения, получено уравнение изображений:
где L{ } = L{1} = /S. При P1(0) = 0
S P1 (S) + P1 (S)( + ) = /S. P1 (S)(S + + ) = /S,
откуда изображение вероятности нахождения объекта в неработоспособном состоянии:
Разложение дроби на элементарные составляющие приводит к:
Применяя обратное преобразование Лапласа, с учетом: L{f(t)} = 1/S, то f(t) = 1;
L{f(t)} = 1/(S + a), то f(t) = e-at,
вероятность нахождения объекта в неработоспособном состоянии определяется:
Тогда вероятность нахождения в работоспособном состоянии P0(t) = 1 - P1(t), равна
С помощью полученных выражений можно рассчитать вероятность работоспособного состояния и отказа восстанавливаемого объекта в любой момент t. Коэффициент готовности системы kг.с.. определяется при установившемся режиме t , при этом Pi(t) = Pi = const, поэтому составляется система алгебраических уравнений с нулевыми левыми частями, поскольку
dPi(t)/dt = 0.
Так как kг.с есть вероятность того, что система окажется работоспособной в момент t при t , то из полученной системы уравнений определяется P0 = kг.с. При t алгебраические уравнения имеют вид:
Дополнительное уравнение: P0 + P1 = 1. Выражая P1 = 1 - P0, получаем 0 = P0 - (1 - P0), или = P0 ( + ), откуда
Остальные показатели надежности восстанавливаемого элемента: - функция готовности Г(t), функция простоя П(t)
Г(t) = P0 (t); П(t) = 1 - Г(t) = P1(t).
- параметр потока отказов (t) по (4)
(t) = P0(t) = Г(t).
При t (стационарный установившийся режим восстановления)
(t) = () = = P0 = kг.с.
- ведущая функция потока отказов (t )
- средняя наработка между отказами (t )
t0= kг.с./ = kг.с./ kг = 1/ .
На рис. приведено изменение вероятности нахождения объекта в работоспособном состоянии.
Рис. 1
Анализ изменения P0(t) позволяет сделать выводы: 1) При мгновенном (автоматическом) восстановлении работоспособности ( = ) / = 0 и P0(t) = 1.
2) При отсутствии восстановления ( = 0)
/ = и P0(t) = e- t,
и вероятность работоспособного состояния объекта равна ВБР невосстанавливаемого элемента. Некоторые дополнения по применению метода дифференциальных уравнений для оценки надежности. Метод дифференциальных уравнений может быть использован для расчета показателей надежности и невосстанавливаемых объектов (систем). В этом случае неработоспособные состояния системы являются «поглощающими» и интенсивности выхода из этих состояний исключаются. Для невосстанавливаемого объекта граф состояний имеет вид:
Система дифференциальных уравнений:
Начальные условия: P0 (0) = 1; P1(0) = 0. Изображение по Лапласу первого уравнения системы:
После группировки:
откуда
Используя обратное преобразование Лапласа, оригинал вероятности нахождения в работоспособном состоянии, т. е. ВБР к наработке t:
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|