Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Тема № 2. Элементы векторной алгебры и аналитической геометрии




 

2.1. Даны вершины треугольной пирамиды , . Найти:

1) угол между ребрами и ;

2) площадь грани ;

3) объем пирамиды ;

4) длину высоты, опущенной из вершины S на грань АВС;

5) уравнение высоты, опущенной из вершины S на грань АВС.

Тема № 3. Предел и производная функции одной переменной

 

 

3.1. С помощью методов дифференциального исчисления исследовать и построить график функции

 

Тема № 4. Интегральное исчисление функции одной переменной

4.1.Найти интеграл .

4.2.Найти интеграл .

4.3. Найти интеграл .

4.4. Построить схематический чертеж и найти площадь фигуры, ограниченной линиями:

, .

Тема № 5. Дифференциальное исчисление функции нескольких переменных.

5.1. Найти дифференциал функции .

5.2. Показать, что функция удовлетворяет уравнению .

Краткие теоретические сведения для выполнения

Контрольной работы

И решение типовых задач

Тема 1 Элементы линейной алгебры

Матрицы и действия над ними

Прямоугольная таблица чисел вида

называется матрицей размера m ´ n; здесь m – число строк, n – число столбцов.

Числа (i = 1,2,…, m; j = 1,2,…, n) составляющие матрицу, называются ее элементами. Первый индекс i означает номер строки, второй j – номер столбца.

Если число строк и столбцов матрицы одинаковое , то матрица называется квадратной, порядка n.

Квадратная матрица, в которой все элементы, не стоящие на главной диагонали, равны нулю, называется диагональной, а диагональная матрица, у которой все элементы, стоящие на главной диагонали равны единице, называется единичной:

Квадратная матрица называется треугольной, если все элементы, расположенные по одну сторону от главной диагонали, равны нулю. Например:

.

Матрица, все элементы которой равны нулю, называется нулевой и обозначается символом О, например .

Прямоугольная матрица, в которой каждая строка заменена столбцом с тем же номером, называется транспонированной по отношению к данной матрице, обозначается . Например, если , то .

Очевидно, что .

Действия над матрицами

 

Две матрицы одинакового размера называются равными, если их соответствующие элементы равны.

А = В, если = (i = 1,2,…, m; j = 1,2,…, n).

Суммой двух матриц одинакового размера называется матрица того же размера, все элементы которой равны суммам соответствующих элементов слагаемых матриц.

А + В = С, если + = (i = 1,2,…, m; j = 1,2,…, n).

 

Пример 1

.

 

Произведением матрицы А на число α называется матрица αА или А α, все элементы которой равны соответствующим элементам матрицы А, умноженным на α.

 

Пример 2

 

Матрица называется противоположной матрице А.

 

Умножение матриц.

 

Пусть дана матрица А размера m ´ n и матрица В размера n ´ p.

 

Для двух матриц А и В, у которых число столбцов первой матрицы равно числу строк второй матрицы, определено понятие произведения матрицы А на В следующим образом:

С = А · В, где С есть матрица размера m ´ p,

,

если , где (i = 1,2,…, m; j = 1,2,…, p).

 

Из определения вытекает следующее правило умножения матриц: чтобы получить элемент, стоящий в i -той строке и j -том столбце произведения двух матриц, нужно элементы i -той строки первой матрицы умножить на соответствующие элементы j –го столбца второй и полученные произведения сложить.

Таким образом, чтобы составить первую строку матрицы С нужно перемножить первую строку матрицы А поочередно на все столбцы В; чтобы получить вторую строку произведения С, нужно вторую строку А перемножить последовательно на все столбцы В и т.д.

Пример 3

 

Произведение двух матриц НЕ подчиняется переместительному (коммутативному) закону

,

в чем можно убедиться на примерах. Кроме того, если произведение АВ определено, то ВА может не иметь смысла.

В частных случаях, когда матрицы называются перестановочными.

Легко доказать, что единичная матрица Е перестановочна с любой квадратной матрицей А того же порядка, причем

А Е = Е А = А.

Таким образом, единичная матрица играет роль единицы при умножении.

Пример 4

Найти значение матричного многочлена , если , , .

Решение

.

 

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...