Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Тема № 4 Интегральное исчисление функции одной переменной




 

4.1. Метод интегрирования подведением под знак дифференциала

 

Функция называется первообразной для функции на интервале , конечном или бесконечном, если в любой точке этого интервала функция дифференцируема и имеет производную .

Совокупность всех первообразных для функции , определенных на интервале , называется неопределенным интегралом от функции на этом интервале и обозначается символом

.

Метод подведения под знак дифференциала следует из свойства инвариантности неопределенного интеграла.

Пусть дан интеграл . Справедливо равенство

,

где – некоторая непрерывно дифференцируемая функция.

 

Таблица интегралов

1. 8.
2. 9.
3. 10.
4. 11.
5. 12.
6. 13.
7. 14.
15.

 

При интегрировании методом подведения под знак дифференциала необходимо иметь в виду следующие равенства:

 

В общем случае

.

Пример 1

Найти интеграл .

Так как , то

.

 

Пример 2

Найти интеграл .

Так как , то

.

 

Пример 3

Найти интеграл .

Так как , то

Пример 4

Найти интеграл .

Так как , то

.

4.2. Метод интегрирования по частям

 

Пусть дан интеграл вида , где - непрерывно дифференцируемые функции. Справедлива формула интегрирования по частям

.

Таким образом, вычисление интеграла приводится к вычислению интеграла , который может оказаться более простым или табличным.

Пусть - многочлен степени n. Методом интегрирования по частям можно вычислить, например, интегралы вида:

 

1 группа: 2 группа:

 

Пример

Найти интеграл .

Решение

Положим , найдем , . Так как достаточно взять одну из первообразных, то принимаем . Применим формулу интегрирования по частям

.

4.4. Вычисление площадей с помощью определенного интеграла

 

Пусть функция определена и непрерывная на отрезке и пусть, для определенности,

Разобьем отрезок на n частей произвольным образом точками деления: . Выберем на каждом частичном промежутке произвольным образом точки .

Обозначим Составим сумму , которая называется интегральной суммой для функции на отрезке .

Обозначим длину наибольшего частичного промежутка через Перейдем к пределу при .

 

Если существует конечный предел , не зависящий от способа разбиения отрезка на частичные и выбора на них точек , то он и называется определенным интегралом от функции на отрезке и обозначается

Если – любая первообразная для функции , то справедлива формула Ньютона – Лейбница:

,

т.е. для вычисления определенного интеграла от непрерывной функции нужно составить разность значений произвольной ее первообразной для верхнего и нижнего пределов интегрирования.

 

Пример 1

Если то численно равен площади криволинейной трапеции, ограниченной кривой ,

 

прямыми и осью ох:

Если меняет знак конечное число раз на отрезке , то интеграл по всему отрезку разбивается на сумму интегралов по частичным отрезкам, интеграл будет положителен там, где и отрицателен, где :

.

Пусть нужно вычислить площадь фигуры, ограниченной кривыми и и прямыми , тогда при условии имеем

Пример 2

Вычислить площадь фигуры, ограниченной линиями и .

Решение

у у=х+ 3     у=х 2+1 3       –3 –1 0 2 х   Найдем точки пересечения: ,

.

Тема № 5 Дифференциальное исчисление функции нескольких

Переменных.

 

5.1. Частные производные функции двух переменных

 

Переменная z называется функцией двух независимых переменных х и у на некотором множестве точек , если каждой паре значений из множества соответствует определенное значение величины z.

Пишут:

.

С геометрической точки зрения функция представляет собой поверхность.

Если при отношение частного приращения функции к вызвавшему его приращению аргумента имеет конечный предел, то этот предел называется частной производной функции по независимой переменной х в точке и обозначается , или , или .

Таким образом, по определению

.

Аналогично,

.

Так как вычисляется при неизменном значении переменной у, а – при неизменном значении переменной х, определение частных производных можно сформулировать так: частной производной по х функции называется обычная производная этой функции по х, вычисленная в предположении, что у есть постоянная; частной производной по у функции называется ее производная по у, вычисленная в предположении, что х – постоянная.

 

Пример 1

Найти частные производные функции .

Решение

 

Пример 2

Показать, что функция удовлетворяет уравнению .

Решение

Найдем частные производные

,

.

Подставим найденные выражения в левую часть уравнения:

что и требовалось доказать.

5.2. Дифференциал функции двух переменных

 

Частным дифференциалом функции называется произведение частной производной на соответствующее произвольное приращение независимой переменной:

выражение называется частным дифференциалом функции по переменной х;

выражение называется частным дифференциалом функции по переменной у.

 

Пример 1

Найти частные дифференциалы функции

Решение

, .

 

Полный дифференциал функции равен сумме ее частных дифференциалов:

.

 

Пример 2

Найти дифференциал функции .

Решение

Найдем частные производные

,

.

Подставим частные производные в формулу полного дифференциала, получим

.

 

Краткое содержание (программа) курса

 

Элементы линейной алгебры

Матрицы, операции над ними. Определители и их свойства и вычисление. Ранг матрицы, обратная матрица. Теорема Кронекера-Капелли. Решение систем линейных алгебраических уравнений по формулам Крамера, матричным методом и методом Гаусса. Система m линейных уравнений с n неизвестными.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...