Решение систем линейных алгебраических уравнений
(СЛАУр)
Рассмотрим систему трех линейных уравнений с тремя неизвестными:
Если хотя бы одно из чисел Решением системы (1) называется упорядоченная совокупность чисел Если система имеет решение, то она называется совместной, если не имеет решения – то несовместной. Если система имеет единственное решение, то она называется определенной, если более одного решения, то – неопределенной.
Формулы Крамера для решения СЛАУр
Если определитель системы
где
В знаменателях этих формул стоит определитель системы Пример 1. Решить систему Решение Формулы Крамера:
Итак, Ранг матрицы
Пусть дана матрица
Рангом матрицы называется наибольший из порядков отличных от нуля ее миноров. Обозначение: rang A, r (А) или r. Очевидно, Минор, порядок которого определяет ранг матрицы, называется базисным. Вычисление всех миноров отличных от нуля трудоемкая операция. На практике для вычисления r (A) используют метод Гаусса. Элементарными преобразованиями называются следующие действия над матрицами: 1. Вычеркивание нулевой строки.
2. Умножение какой либо строки на число. 3. Прибавление к одной из строк другой строки, умноженной на любое число. 4. Перестановка двух столбцов или двух строк.
Теорема 1. Ранг матрицы не меняется при элементарных преобразованиях.
Рассмотрим матрицу специального вида
в которой все «диагональные элементы»
Теорема 2. Ранг трапециевидной матрицы равен числу ее ненулевых строк.
Теорема 3. Всякую матрицу можно с помощью конечного числа элементарных преобразований привести к трапециевидному виду.
Метод Гаусса вычисления ранга матрицы состоит в приведении матрицы к трапециевидному виду и в подсчете ее ненулевых строк.
Пример 2. Найти ранг матрицы Решение
На первом шаге первую строку матрицы умножили на (-2) и сложили со второй строкой, умножили первую строку на (-4) и сложили с третьей строкой. На втором шаге вторую строку умножили на (-3) и сложили с третьей строкой. Нулевую строку вычеркнули. Таким образом, ранг матрицы r = 2.
Метод Гаусса решения СЛАУр Пусть дана система линейных алгебраических уравнений (СЛАУр)
Поставим задачу: исследовать данную систему, т.е. выяснить, не решая ее, совместна она или несовместна, а если совместна, то определенна она или неопределенна. На все эти вопросы отвечает теорема Кронекера - Капелли. Пусть дана матрица системы Рассмотрим расширенную матрицу системы
Теорема Кронекера – Капелли. СЛАУр совместна тогда и только тогда, когда ранг расширенной матрицы равен рангу матрицы системы:
Замечание Если Метод Гаусса решения СЛАУр состоит в следующем.
1. Выписывают расширенную матрицу системы
и с помощью элементарных преобразований приводят ее к трапециевидному виду. 2. Применяя теорему Кронекера – Капелли, исследуют систему, получая один из случаев: – система совместна и определенна, – система совместна и неопределенна, – система несовместна. Трапециевидная форма расширенной матрицы С в каждом из этих случаев имеет вид:
1) С ~ следовательно, система определенна, имеет единственное решение,
2) С ~ следовательно, система неопределенна, имеет бесконечное множество решений,
3) если какая-либо строка матрицы С имеет вид
3. Для решения системы, если оно существует, следует записать новую систему, отвечающую полученной трапециевидной матрице, которая является более простой по сравнению с исходной и решить ее (обратный ход).
Пример 3. Исследовать и решить СЛАУр: Решение Составим расширенную матрицу и проведем над ней эквивалентные преобразования для определения
Таким образом, Составим систему, соответствующую последней матрице, эквивалентную исходной:
Таким образом,
Пример 4. Исследовать и решить СЛАУр:
Решение
Так как Последней матрице соответствует система:
где
Пример 5. Исследовать и решить СЛАУр: Решение
Так как
Пример 6. Исследовать и решить СЛАУр: Решение
Таким образом,
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|