Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Для экономических специальностей заочного отделения




Теория вероятностей

Вариант №10

1. Решить задачу, используя классическое определение вероятности и правила комбинаторики.

Пяти полевым радиостанциям разрешено во время учений работать на 6 радиоволнах. Выбор волны на каждой станции производится наудачу. Найти вероятность того, что будут использованы различные радиоволны.

2. Решить задачу, используя теоремы сложения и умножения вероятностей. Девушка забыла последнюю цифру номера телефона своего жениха и набрала ее наугад. Определить вероятность того, что ей придется набирать номер не более трех раз.

3. Решить задачу, используя формулу полной вероятности или формулу Байеса.

В первом ящике содержится 20 деталей, из них 15 стандартных; во втором – 30 деталей, из них 24 стандартных; в третьем – 10 деталей, из них 6 стандартных. Найти вероятность того, что наудачу извлеченная деталь из наудачу взятого ящика – стандартная.

4. Решить задачи, используя формулу Бернулли и теоремы Муавра-Лапласа.

а) Вероятность появления некоторого события в каждом из 5 независимых опытов равна 0,2. Определить вероятность появления этого события по крайней мере 3 раза.

б) Всхожесть семян данного сорта растений составляет 90%. Найти вероятность того, что из 900 посаженых семян число проросших будет: 1) равно 800, 2) заключено между 805 и 820.

5. Найти закон распределения дискретной случайной величины.

Дискретная случайная величина Х имеет только два возможных значения: x 1 и x 2, причем x 1 < x 2. Вероятность того. что Х примет значение x 1 равно 0,3. Найти закон распределения Х, зная математическое ожидание М[X] = 2,7 и дисперсию D[X] = 0,21.

6. Непрерывная случайная величина Х задана функцией распределения

Найти: а) параметр k; б) математическое ожидание; в) дисперсию.

7. Известны математическое ожидание а =9 и среднее квадратичное отклонение s=4 нормально распределенной случайной величины Х. Найти вероятность: а) попадания этой величины в заданный интервал (2, 10); б) отклонения этой величины от математического ожидания не более, чем на d=5.


Контрольная работа №8

Для экономических специальностей заочного отделения

Теория вероятностей

Вариант №11

1. Решить задачу, используя классическое определение вероятности и правила комбинаторики.

На каждой из шести одинаковых карточек напечатана одна из следующих букв: а, т, м, р, с, о. Карточки тщательно перемешаны. Найти вероятность того, что на четырех, вынутых по одной и расположенных "в одну линию" карточках, можно будет прочесть слово " трос ".

2. Решить задачу, используя теоремы сложения и умножения вероятностей. Вероятность брака из-за нарушения режима обработки деталей равна 0,02, а вследствие неисправности станка – 0,08. Какова вероятность выпуска бракованных деталей?

3. Решить задачу, используя формулу полной вероятности или формулу Байеса.

В телевизионном ателье имеется 3 кинескопа. Вероятности того, что кинескоп выдержит гарантийный срок службы, соответственно равны 0,8; 0,9; 0,85. Найти вероятность того, что взятый наудачу кинескоп выдержит гарантийный срок службы.

4. Решить задачи, используя формулу Бернулли и теоремы Муавра-Лапласа.

а) Вероятность хотя бы одного попадания стрелком в цель при 4 выстрелах равна 0,9919. Найти вероятность попадания в цель при одном выстреле, если вероятность попадания в цель при одном выстреле.

б) Посажено 600 семян кукурузы с вероятностью 0,9 прорастания для каждого семени. Найти вероятность того, что взойдет: 1) ровно 550 семян, 2) больше 535 и меньше 555.

5. Найти закон распределения дискретной случайной величины.

Дискретная случайная величина Х имеет только два возможных значения: x 1 и x 2, причем x 1 < x 2. Вероятность того. что Х примет значение x 1 равно 0,2. Найти закон распределения Х, зная математическое ожидание М[X] = 2 и дисперсию D[X] = 4.

6. Непрерывная случайная величина Х задана функцией распределения

Найти: а) параметр k; б) математическое ожидание; в) дисперсию.

7. Известны математическое ожидание а =8 и среднее квадратичное отклонение s=3 нормально распределенной случайной величины Х. Найти вероятность: а) попадания этой величины в заданный интервал (3, 5); б) отклонения этой величины от математического ожидания не более, чем на d=5.


Контрольная работа №8

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...