Для экономических специальностей заочного отделения
Теория вероятностей Вариант №12 1. Решить задачу, используя классическое определение вероятности и правила комбинаторики. Собрание, на котором присутствуют 25 человек, в том числе 15 женщин, выбирают делегацию из 5 человек. Найти вероятность того, что в делегацию войдут 3 женщины, считая, что каждый из присутствующих может быть избран с одинаковой вероятностью. 2. Решить задачу, используя теоремы сложения и умножения вероятностей. Вероятность одного попадания в цель при одном залпе из двух орудий равна 0,26. Найти вероятность поражения цели первым из орудий, если известно, что вероятность попадания в цель вторым орудием при одном выстреле равна 0,9. 3. Решить задачу, используя формулу полной вероятности или формулу Байеса. В двух ящиках имеются радиолампы. В первом ящике содержится 12 ламп, из них 1 нестандартная; во втором 10 ламп, из них 1 нестандартная. Из первого ящика наудачу взята лампа и переложена во второй. Найти вероятность того, что наудачу извлеченная лампа из второго ящика лампа будет нестандартной. 4. Решить задачи, используя формулу Бернулли и теоремы Муавра-Лапласа. а) Каждое утро студент может опоздать на занятия с вероятностью 0,1. Сколько дней потребуется студенту, чтобы вероятность опоздания на занятия была равна 0,99. б) Вероятность выхода из строя одного прибора равна 0,15. Найти вероятность того, что из 90 имеющихся приборов выйдет из строя: 1) ровно 10, 2) больше 15, но меньше 20. 5. Найти закон распределения дискретной случайной величины. Дан перечень возможных значений дискретной величины Х: x 1=1, x 2=2, x 3=3, а также даны математическое ожидание этой величины M[X]=2,3 и ее квадрата M[X2]=5,9. Найти закон распределения случайной величины Х.
6. Непрерывная случайная величина Х задана функцией распределения Найти: а) параметр k; б) математическое ожидание; в) дисперсию. 7. Известны математическое ожидание а =3 и среднее квадратичное отклонение s=2 нормально распределенной случайной величины Х. Найти вероятность: а) попадания этой величины в заданный интервал (2, 5); б) отклонения этой величины от математического ожидания не более, чем на d=3. Контрольная работа №8 Для экономических специальностей заочного отделения Теория вероятностей Вариант №13 1. Решить задачу, используя классическое определение вероятности и правила комбинаторики. В замке на общей оси пять дисков, каждый из которых разделен на шесть секторов с различными написанными на них буквами. Замок открывается только в том случае, если каждый диск занимает одно определенное положение относительно корпуса замка. Найти вероятность того, что при произвольной установке дисков замок можно будет открыть. 2. Решить задачу, используя теоремы сложения и умножения вероятностей. Студент разыскивает нужную ему формулу в трех справочниках. Вероятности того, что формула содержится в первом, втором и третьем справочнике соответственно равны 0,6, 0,8 и 0,9. Найти вероятность того, что формула содержится только в двух справочниках. 3. Решить задачу, используя формулу полной вероятности или формулу Байеса. Имеются две урны: в первой находится 3 белых и 2 черных шара, во второй – 4 белых и 4 черных шара. Из первой урны во вторую случайным образом перекладывают два шара. После этого из второй урны берут три шара. Найти вероятность того, что эти шары будут одного цвета. 4. Решить задачи, используя формулу Бернулли и теоремы Муавра-Лапласа. а) Известно, что при взвешивании равновозможно как положительная, так и отрицательная ошибка. Какова вероятность того. что при 5 взвешиваниях получатся 3 положительные ошибки.
б) Посажено 1200 семян фасоли с вероятностью прорастания 0,95. Найти вероятность того, что прорастет: 1) ровно 1150 семян, 2) не менее 1130, но не более 1160. 5. Найти закон распределения дискретной случайной величины. Дискретная случайная величина Х имеет только два возможных значения: x 1 и x 2, причем x 1 < x 2. Вероятность того. что Х примет значение x 1 равно 0,3. Найти закон распределения Х, зная математическое ожидание М[X] = 1,5 и дисперсию D[X] = 5,25. 6. Непрерывная случайная величина Х задана функцией распределения Найти: а) параметр k; б) математическое ожидание; в) дисперсию. 7. Известны математическое ожидание а =4 и среднее квадратичное отклонение s=3 нормально распределенной случайной величины Х. Найти вероятность: а) попадания этой величины в заданный интервал (2, 8); б) отклонения этой величины от математического ожидания не более, чем на d=2. Контрольная работа №8
Воспользуйтесь поиском по сайту: ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|