Для экономических специальностей заочного отделения
Теория вероятностей Вариант №20 1. Решить задачу, используя классическое определение вероятности и правила комбинаторики. В первой урне находятся 1 белый и 4 черных шара, во второй урне – 2 белых и 3 черных шара, в третьей – 3 белых и 2 черных шара. Из каждой урны случайным образом вынули по одному шару. Найти вероятность того, что среди вынутых шаров будет один белый и два черных шара. 2. Решить задачу, используя теоремы сложения и умножения вероятностей. Система, состоящая из двух элементов типа А и трех элементов типа В, выходит из строя в случае, если отказывает хотя один элемент типа А или более одного элемента типа В. Найти надежность (вероятность безотказной работы) системы, если элементы независимы и вероятность безотказной работы элемента А равна 0,9, а элемента В равна 0,7. 3. Решить задачу, используя формулу полной вероятности или формулу Байеса. В цехе три типа автоматов, которые производят одни и те же детали. Производительность их одинакова, но качество работы различно. Автоматы первого типа производят 90% деталей отличного качества, второго – 85%, третьего – 80%. Все детали в несортированном виде сложены на складе. Определить вероятность того, что взятая наудачу деталь отличного качества, если автоматов первого типа – 10 штук, второго – 8 штук, третьего – 2 штуки. 4. Решить задачи, используя формулу Бернулли и теоремы Муавра-Лапласа. а) Вероятность поражения мишени стрелком при одном выстреле равна 0,6. Найти вероятность того, что при 12 выстрелах мишень будет поражена 7 раз. б) Вероятность того, что деталь не прошла проверку ОТК, равна р=0,15. Найти вероятность того, что среди 400 случайно отобранных деталей окажется непроверенных: 1) ровно80; 2) от 50 до 75.
5. Найти закон распределения дискретной случайной величины. Дискретная случайная величина Х имеет только два возможных значения: x 1 и x 2, причем x 1 < x 2. Вероятность того. что Х примет значение x 1 равно 0,9. Найти закон распределения Х, зная математическое ожидание М[X] = 2,3 и дисперсию D[X] = 0,81. 6. Непрерывная случайная величина Х задана функцией распределения Найти: а) параметр k; б) математическое ожидание; в) дисперсию. 7. Известны математическое ожидание а =4 и среднее квадратичное отклонение s=2 нормально распределенной случайной величины Х. Найти вероятность: а) попадания этой величины в заданный интервал (3, 7); б) отклонения этой величины от математического ожидания не более, чем на d=3. Контрольная работа №8 Для экономических специальностей заочного отделения Теория вероятностей Вариант №21 1. Решить задачу, используя классическое определение вероятности и правила комбинаторики. Студент знает 10 из 30 вопросов программы. считается сданным, если студент ответит не менее, чем на два из трех имеющихся в билете вопросов. Какова вероятность того, что студент сдаст зачет? 2. Решить задачу, используя теоремы сложения и умножения вероятностей. Вероятность наступления события в каждом опыте одинакова равна 0,7. Опыты производятся последовательно до наступления события. Определить вероятность того, что понадобится 3 опыта. 3. Решить задачу, используя формулу полной вероятности или формулу Байеса. В первой урне содержатся 5 голубых и 3 зеленых шара; во второй – 4 голубых и 7 зеленых шара. Из первой урны во вторую случайным образом перекладывают два шара. После этого из второй урны наудачу извлекаются три шара. Найти вероятность того, что будет извлечено 2 голубых и 1 зеленый шар. 4. Решить задачи, используя формулу Бернулли и теоремы Муавра-Лапласа. а) Стрелок производит три выстрела. Вероятность того, что он попадет в цель по крайней мере один раз, равна 0,973. Какова вероятность попадания в цель при одном выстреле?
б) Всхожесть семян определенного сорта растений равна 0,85. Найти вероятность того, что из 300 посаженных семян число проросших будет: 1) ровно 250; 2) не менее 250, но не более 270. 5. Найти закон распределения дискретной случайной величины. Дан перечень возможных значений дискретной величины Х: x 1=–3, x 2=2, x 3=4, а также даны математическое ожидание этой величины M[X]=0,3 и ее квадрата M[X2]=11,3. Найти закон распределения случайной величины Х. 6. Непрерывная случайная величина Х задана функцией распределения Найти: а) параметр k; б) математическое ожидание; в) дисперсию. 7. Известны математическое ожидание а =3 и среднее квадратичное отклонение s=3 нормально распределенной случайной величины Х. Найти вероятность: а) попадания этой величины в заданный интервал (4, 8); б) отклонения этой величины от математического ожидания не более, чем на d=6. Контрольная работа №8
Воспользуйтесь поиском по сайту: ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|