для экономических специальностей заочного отделения
⇐ ПредыдущаяСтр 12 из 12 Теория вероятностей Вариант №24 1. Решить задачу, используя классическое определение вероятности и правила комбинаторики. Собрание, на котором присутствуют 20 человек, в том числе 8 женщин, выбирают делегацию из 5 человек. Найти вероятность того, что в делегацию войдут 3 женщины, считая, что каждый из присутствующих может быть избран с одинаковой вероятностью. 2. Решить задачу, используя теоремы сложения и умножения вероятностей. Студент разыскивает нужную ему формулу в трех справочниках. Вероятности того, что формула содержится в первом, втором и третьем справочнике соответственно равны 0,5, 0,7 и 0,9. Найти вероятность того, что хотя бы в одном справочнике этой формулы нет. 3. Решить задачу, используя формулу полной вероятности или формулу Байеса. Имеются две урны: в первой находится 4 красных и 3 синих шара, во второй – 5 красных и 2 синих шара. Из первой урны во вторую случайным образом перекладывают два шара. После этого из второй урны берут четыре шара. Найти вероятность того, что синих и красных шаров будет одинаковое число. 4. Решить задачи, используя формулу Бернулли и теоремы Муавра-Лапласа. а) Вероятность появления некоторого события в каждом из 5 независимых опытов равна 0,25. Определить вероятность появления этого события по крайней мере 2 раза. б) Всхожесть семян данного сорта растений составляет 80%. Найти вероятность того, что из 700 посаженых семян число проросших будет: 1) равно 550, 2) заключено между 545 и 585. 5. Найти закон распределения дискретной случайной величины. Дан перечень возможных значений дискретной величины Х: x 1=–1, x 2=3, x 3=5, а также даны математическое ожидание этой величины M[X]=0,8 и ее квадрата M[X2]=5,8. Найти закон распределения случайной величины Х.
6. Непрерывная случайная величина Х задана функцией распределения Найти: а) параметр k; б) математическое ожидание; в) дисперсию. 7. Известны математическое ожидание а =10 и среднее квадратичное отклонение s=3 нормально распределенной случайной величины Х. Найти вероятность: а) попадания этой величины в заданный интервал (5, 9); б) отклонения этой величины от математического ожидания не более, чем на d=7. Контрольная работа №8 Для экономических специальностей заочного отделения Теория вероятностей Вариант №25 1. Решить задачу, используя классическое определение вероятности и правила комбинаторики. Для уменьшения общего количества игр 10 команд случайным образом разбиты на две равные подгруппы. Определить вероятность того. Что две наиболее сильные команды окажутся в одной подгруппе. 2. Решить задачу, используя теоремы сложения и умножения вероятностей. Два охотника одновременно и независимо друг от друга делают два выстрела по зайцу. Какова вероятность попадания в зайца (хотя бы при одном выстреле), если вероятность попадания для первого охотника равна 0,7, а для второго – 0,8. 3. Решить задачу, используя формулу полной вероятности или формулу Байеса. Батарея из трех орудий произвела залп, причем два снаряда попали в цель. Найти вероятность того, что первое орудие дало попадание, если вероятности попадания в цель первым, вторым и третьим орудиями соответственно равны 0,4, 0,3, 0,5. 4. Решить задачи, используя формулу Бернулли и теоремы Муавра-Лапласа. а) Вероятность хотя бы одного попадания стрелком в цель при 4 выстрелах равна 0,9984. Найти вероятность попадания в цель при одном выстреле, если вероятность попадания в цель при одном выстреле. б) Было посажено 500 деревьев. Вероятность того, что отдельное дерево приживется равно 0,75. Найти вероятность того, что число прижившихся деревьев: 1) равно 350, 2) больше 360, но меньше 390.
5. Найти закон распределения дискретной случайной величины. Дискретная случайная величина Х имеет только два возможных значения: x 1 и x 2, причем x 1 < x 2. Вероятность того. что Х примет значение x 1 равно 0,3. Найти закон распределения Х, зная математическое ожидание М[X] = 1,1 и дисперсию D[X] = 1,89. 6. Непрерывная случайная величина Х задана функцией распределения Найти: а) параметр k; б) математическое ожидание; в) дисперсию. 7. Известны математическое ожидание а =9 и среднее квадратичное отклонение s=5 нормально распределенной случайной величины Х. Найти вероятность: а) попадания этой величины в заданный интервал (4, 12); б) отклонения этой величины от математического ожидания не более, чем на d=2.
Воспользуйтесь поиском по сайту: ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|