Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Субъективная шкале запаха амилацетата, разведенного в диэтилфтолате




Субъективная шкале запаха амилацетата, разведенного в диэтилфтолате

 

 

Наиболее существенным недостатком метода оценки величин с заданным модулем может быть зависимость экспоненты степенной функции от места заданного модуля в стимульном ряду. Наличие такой зависимости (Энген, 1971) весьма неприятно тем, что ставит под сомнение экспоненту степенной функции как специальную характеристику модальности стимульного континуума. Однако существование такой зависимости далеко не всегда подтверждается экспериментами (Стивенc, 1956; Джонс и Восков, 1966).

2. Метод оценки величин со свободным модулем.

В этом варианте метода идея о независимости суждений испытуемого от выбора модуля получила логическое завершение: никакой стимул не объявляется стандартным, не вводятся никакие ограничения при выборе чисел для ответа. Единственное требование к испытуемому — стараться при ответе использовать числа, точно выражающие величину вызванного стимулом ощущения. Обычно стимулы предъявляются рандомизированно и в своем для каждого испытуемого порядке. Перед началом опыта испытуемому дают несколько (3—5) тренировочных проб.

Особенности этого варианта метода иллюстрируются в работе Каин (1968) по оценке интенсивности запаха пентанола. 15 испытуемых оценивали каждую из 7 концентраций пентанола по 2 раза. Инструкция испытуемым:

" Вам будет предъявляться в нерегулярном порядке ряд тюбиков, содержащих один и тот же по качеству запах, но отличающихся по его интенсивности. Ваша задача — сообщать мне об интенсивности запаха, характеризуя его соответствующим числом. Когда Вы понюхаете тюбик, обозначьте интенсивность запаха числом — любым числом, которое Вам кажется подходящим. Затем я буду поочередно предъявлять Вам другие тюбики, и Вы будете каждому приписывать число. Постарайтесь, чтобы отношения между приписываемыми числами соответствовали отношениям между интенсивностями запахов. Иначе говоря, числа должны быть пропорциональны интенсивности исследуемого запаха. Помните, что вы можете использовать любое число, ограничений в выборе числа не существует. Правильного или неправильного ответа здесь быть не может. Нас интересует Ваше суждение об интенсивности запаха. Есть вопросы? " *.

* Цит. по: Engen Т. Perception of odors. N. Y.: Academic Press, 1982.

 

Полученные в экспериментах Кайн данные представлены в табл. 3.

Казалось бы, что геометрическое среднее каждой колонки матрицы может рассматриваться как значение на субъективной шкале силы запаха. Однако в силу отсутствия каких-либо ограничений в выборе модуля, используемого разными испытуемыми, числовые области могут сильно расходиться. Эта вариативность должна быть устранена до усреднения групповых данных.

Стивенc (1956) предлагает использовать простую процедуру приведения оценок каждого испытуемого, данных каждому из стимулов, к единой величине путем умножения на подходящий коэффициент. Процедура обработки " сырых" данных включает следующие этапы: 1) определение медианы или геометрического среднего двух оценок каждого стимула каждым испытуемым; 2) выбор единого шкального значения оценки стимула (желательно брать его для середины стимульного ряда) и приведение всех оценок каждого испытуемого к единому масштабу через умножение на соответствующий коэффициент; 3) вычисление геометрического среднего или медианы для каждого стимула по приведенным оценкам всех испытуемых даст шкальные значения измеряемого признака.

Таблица 3

Индивидуальные оценки концентраций пентанола (Кайн, 1968)

 

 

Достоинством предлагаемого Стивенсом способа обработки является его простота. Недостаток этого способа состоит в том, что определение коэффициента для приведения индивидуальных оценок осуществляется на основе суждений только об одном стимуле. Следовательно, в этом способе не учитывается индивидуальная несистематичность в использовании чисел, в силу которой оценка испытуемым отдельного стимула может заметно выпадать из общей закономерности. Если коэффициент приведения вычисляется по оценке именно такого стимула, то возрастает ошибка в усреднении групповых оценок всех стимулов.

Энген (1971) предлагает более громоздкий, но зато и более корректный способ первичной обработки экспериментальных данных, в котором учитывается как меж-, так и внутрииндивидуальная вариативность суждений. Его способ состоит из 6 этапов:

1. Определить логарифм каждой численной оценки стимула.

2. Вычислить логарифм геометрического среднего оценок каждого стимула в отдельности каждым испытуемым.

3. Найти логарифм геометрического среднего оценок каждым испытуемым всех стимулов, найти среднее каждого ряда (см. табл. 3).

4. Определить среднее всех величин, вычисленных на 3-м этапе — логарифм общего геометрического среднего оценок всех стимулов всеми испытуемыми в матрице " сырых" данных.

5. Вычесть величину логарифма общего геометрического среднего (п. 4) из логарифма индивидуального геометрического среднего (п. 3).

6. Сложить разности, полученные в п. 5, с соответствующими значениями логарифмов геометрического среднего оценок испытуемым каждого стимула (п. 2).

Окончательные результаты такой первичной обработки данных, приведенных в табл. 3, показаны в табл. 4.

Цель, которая достигается этим способом обработки, состоит в уменьшении разброса индивидуальных данных вокруг основной функции, но не влияет на ее параметры. Для получения школьных значений нужно вычислить среднее для каждой колонки, антилогарифм которого и является геометрическим средним оценок группой испытуемых данного стимула. Найденные таким образом геометрические средние используются при определении вида психофизической зависимости.

Таблица 4

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...