Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Градиент. Производная по направлению




Скалярным полем называется плоская или пространственная область, с каждой точкой которой связано определенное значение некоторой физической величины . Задание поля скалярной величины равносильно заданию скалярной (числовой) функции .

Линией уровня скалярного поля называется совокупность точек плоскости, в которых функция этого поля имеет одинаковые значения (, где ).

Градиентом функции называется вектор

= .

Направлениевектора в каждой точке совпадает с направлением нормали к поверхности (линии) уровня, проходящей через эту точку.

Производная функции в точке в направлении вектора , образующего с осями координат углы и , вычисляется по формуле

Пример 3. Найти градиент и производную функции в точке М(3,4) в направлении вектора l, составляющего угол с положительным направлением оси Ох.

Решение. Найдем частные производные функции в точке М:

.

Тогда градиент будет равен: .

Найдем направляющие косинусы: . Тогда производная по направлению будет равна

 

.

 

Двойные интегралы

Основные понятия и определения

Пусть в замкнутой области плоскости задана непрерывная функция .Разобьём область на n «элементарных областей» , площади которых обозначим через , а диаметры (наибольшее расстояние между точками области) через .

В каждой области выберем произвольную точку , умножим значение функции в этой точки на и составим сумму всех таких произведений:

Эта сумма называется функции в области .

Если существует предел интегральной суммы, не зависящий от способа разбиения области на части и выбора точек в них, то он называется двойным интегралом от функции по области и обозначается

 

Таким образом,двойной интеграл определяется равенством

В этом случае функция называетсяинтегрируемой в области ; - область интегрирования; и - переменные интегрирования; или - элемент площади.

 

Поделиться:





Читайте также:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...