Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Моделирование полной группы несовместных событий




События называются несовместными, если вероятность появления этих событий одновременно равна 0. Отсюда следует, что суммарная вероятность группы несовместных событий равна 1.

Обозначим через a 1, a 2, …, an события, а через P 1, P 2, …, Pn — вероятности появления отдельных событий.

Так как события несовместны, то сумма вероятностей их выпадения равна 1: P 1 + P 2 + … + Pn = 1.

Снова используем для имитации выпадения одного из событий генератор случайных чисел, значение которых также всегда находится в диапазоне от 0 до 1. Отложим на единичном интервале[0; 1] отрезки P 1, P 2, …, Pn. Понятно, что в сумме отрезки составят точно единичный интервал. Точка, соответствующая выпавшему числу из ГСЧ на этом интервале, укажет на один из отрезков. Соответственно в большие отрезки случайные числа будут попадать чаще (вероятность появления этих событий больше!), в меньшие отрезки — реже (см. рис. 23.3).

Рис. 23.3. Схема генерации несовместных случайных событий с помощью генератора случайных чисел

На рис. 23.4 показана блок-схема, которая реализует описанный алгоритм. Алгоритм определяет с помощью фильтра, построенного в виде последовательности условных операций (IF), в какой из интервалов — от 0 до P 1, от P 1 до (P 1 + P 2), от (P 1 + P 2) до (P 1 + P 2 + P 3) и так далее — попало число, сгенерированное генератором случайных чисел. Если число попало в какой-то из интервалов (что произойдет всегда и обязательно), то это соответствует выпадению связанного с ним события.

Рис. 23.4. Блок-схема алгоритма имитации случайных несовместных событий

Пример с возможным исходом четырех несовместных случайных событий.

Промоделируем выпадение последовательности событий — будем выбирать из колоды карт наугад карту (определять ее масть). Карты в колоду возвращать не будем.

В колоде 36 карт четырех мастей по 9 карт каждой масти. Интервал от 0 до 1 разделим на равные четыре части: [0.00—0.25], [0.25—0.50], [0.50—0.75], [0.75—1.00]. Первая часть будет соответствовать картам масти червей (Ч), вторая — картам масти пик (П), третья — картам масти виней (В), четвертая — бубей (Б).

Взять случайное равномерно распределенное число в интервале от 0 до 1 из таблицы случайных чисел или стандартного ГСЧ. Пусть, например, это будет число 0.597. Данное число попадает в третий интервал, соответствующий масти В. Произошло случайное событие: «Масть выпавшей карты — В».

Поскольку теперь в колоде 9 карт масти Ч, 9 карт масти П, 8 карт масти В, 9 карт масти Б, то интервал от 0 до 1 будет разбит на отрезки длиной: 9/35, 9/35, 8/35, 9/35, то есть [0.000—0.257], [0.257—0.514], [0.514—0.743], [0.743—1.000]. Разыграем случайное равномерно распределенное число в интервале от 0 до 1. Например, 0.321. Данное число попадает во второй интервал, соответствующий масти П.

Продолжая процесс, можно получить (в зависимости от конкретных случайных чисел), например, такую последовательность: В—П—В—Ч—Б—П—Ч—… (в качестве иллюстрации см. рис. 23.5).

Рис. 23.5. Иллюстрация работы генератора случайных чисел на примере выбора карт из колоды

Моделирование случайной величины
с заданным законом распределения

Большей информативностью, по сравнению с такими статистическими характеристиками как математическое ожидание, дисперсия, для инженера обладает закон распределения вероятности случайной величины X. Представим, что X принимает случайные значения из некоторого диапазона. Например, X — диаметр вытачиваемой детали. Диаметр может отклоняться от запланированного идеального значения под влиянием различных факторов, которые нельзя учесть, поэтому он является случайной слабо предсказуемой величиной. Но в результате длительного наблюдения за выпускаемыми деталями можно отметить, сколько деталей из 1000 имели диаметр X 1 (обозначим NX 1), сколько деталей имели диаметр X 2 (обозначим NX 2) и так далее. В итоге можно построить гистограмму частости диаметров, откладывая для X 1 величину NX 1/1000, для X 2 величину NX 2/1000 и так далее. (Обратите внимание, если быть точным, NX 1 — это число деталей, диаметр которых не просто равен X 1, а находится в диапазоне от X 1 – Δ/2 до X 1 + Δ/2, где Δ = X 1X 2). Важно, что сумма всех частостей будет равна 1 (суммарная площадь гистограммы неизменна). Если X меняется непрерывно, опытов проведено очень много, то в пределе N –> ∞ гистограмма превращается в график распределения вероятности случайной величины. На рис. 24.1, а показан пример гистограммы дискретного распределения, а на рис. 24.1, б показан вариант непрерывного распределения случайной величины.

Рис. 24.1. Сравнение дискретного и непрерывного законов распределения случайной величины

В нашем примере закон распределения вероятности случайной величины показывает насколько вероятно то или иное значение диаметра выпускаемых деталей. Случайной величиной является диаметр детали.

В производстве и технике часто такие законы распределения заданы по условию задачи. Наша задача сейчас состоит в том, чтобы научиться имитировать появление конкретных случайных событий согласно вероятностям такого распределения.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...