Моделирование полной группы несовместных событий
События называются несовместными, если вероятность появления этих событий одновременно равна 0. Отсюда следует, что суммарная вероятность группы несовместных событий равна 1. Обозначим через a 1, a 2, …, an события, а через P 1, P 2, …, Pn — вероятности появления отдельных событий. Так как события несовместны, то сумма вероятностей их выпадения равна 1: P 1 + P 2 + … + Pn = 1. Снова используем для имитации выпадения одного из событий генератор случайных чисел, значение которых также всегда находится в диапазоне от 0 до 1. Отложим на единичном интервале[0; 1] отрезки P 1, P 2, …, Pn. Понятно, что в сумме отрезки составят точно единичный интервал. Точка, соответствующая выпавшему числу из ГСЧ на этом интервале, укажет на один из отрезков. Соответственно в большие отрезки случайные числа будут попадать чаще (вероятность появления этих событий больше!), в меньшие отрезки — реже (см. рис. 23.3).
На рис. 23.4 показана блок-схема, которая реализует описанный алгоритм. Алгоритм определяет с помощью фильтра, построенного в виде последовательности условных операций (IF), в какой из интервалов — от 0 до P 1, от P 1 до (P 1 + P 2), от (P 1 + P 2) до (P 1 + P 2 + P 3) и так далее — попало число, сгенерированное генератором случайных чисел. Если число попало в какой-то из интервалов (что произойдет всегда и обязательно), то это соответствует выпадению связанного с ним события.
Пример с возможным исходом четырех несовместных случайных событий. Промоделируем выпадение последовательности событий — будем выбирать из колоды карт наугад карту (определять ее масть). Карты в колоду возвращать не будем.
В колоде 36 карт четырех мастей по 9 карт каждой масти. Интервал от 0 до 1 разделим на равные четыре части: [0.00—0.25], [0.25—0.50], [0.50—0.75], [0.75—1.00]. Первая часть будет соответствовать картам масти червей (Ч), вторая — картам масти пик (П), третья — картам масти виней (В), четвертая — бубей (Б). Взять случайное равномерно распределенное число в интервале от 0 до 1 из таблицы случайных чисел или стандартного ГСЧ. Пусть, например, это будет число 0.597. Данное число попадает в третий интервал, соответствующий масти В. Произошло случайное событие: «Масть выпавшей карты — В». Поскольку теперь в колоде 9 карт масти Ч, 9 карт масти П, 8 карт масти В, 9 карт масти Б, то интервал от 0 до 1 будет разбит на отрезки длиной: 9/35, 9/35, 8/35, 9/35, то есть [0.000—0.257], [0.257—0.514], [0.514—0.743], [0.743—1.000]. Разыграем случайное равномерно распределенное число в интервале от 0 до 1. Например, 0.321. Данное число попадает во второй интервал, соответствующий масти П. Продолжая процесс, можно получить (в зависимости от конкретных случайных чисел), например, такую последовательность: В—П—В—Ч—Б—П—Ч—… (в качестве иллюстрации см. рис. 23.5).
Моделирование случайной величины Большей информативностью, по сравнению с такими статистическими характеристиками как математическое ожидание, дисперсия, для инженера обладает закон распределения вероятности случайной величины X. Представим, что X принимает случайные значения из некоторого диапазона. Например, X — диаметр вытачиваемой детали. Диаметр может отклоняться от запланированного идеального значения под влиянием различных факторов, которые нельзя учесть, поэтому он является случайной слабо предсказуемой величиной. Но в результате длительного наблюдения за выпускаемыми деталями можно отметить, сколько деталей из 1000 имели диаметр X 1 (обозначим NX 1), сколько деталей имели диаметр X 2 (обозначим NX 2) и так далее. В итоге можно построить гистограмму частости диаметров, откладывая для X 1 величину NX 1/1000, для X 2 величину NX 2/1000 и так далее. (Обратите внимание, если быть точным, NX 1 — это число деталей, диаметр которых не просто равен X 1, а находится в диапазоне от X 1 – Δ/2 до X 1 + Δ/2, где Δ = X 1 – X 2). Важно, что сумма всех частостей будет равна 1 (суммарная площадь гистограммы неизменна). Если X меняется непрерывно, опытов проведено очень много, то в пределе N –> ∞ гистограмма превращается в график распределения вероятности случайной величины. На рис. 24.1, а показан пример гистограммы дискретного распределения, а на рис. 24.1, б показан вариант непрерывного распределения случайной величины.
В нашем примере закон распределения вероятности случайной величины показывает насколько вероятно то или иное значение диаметра выпускаемых деталей. Случайной величиной является диаметр детали. В производстве и технике часто такие законы распределения заданы по условию задачи. Наша задача сейчас состоит в том, чтобы научиться имитировать появление конкретных случайных событий согласно вероятностям такого распределения.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|