Уравнения состояния дискретных систем
Способ математического описания дискретных систем разностными уравнениями является наиболее общим и применяется как для линейных, так и для нелинейных систем. Разностные уравнения позволяют провести полное исследование системы, они хорошо приспособлены для решения задач анализа и синтеза с помощью ЭВМ
Вопрос о составлении разностных уравнений импульсной системы Рис. 33 удобно рассмотреть сразу для многомерной САУ. Уравнения для системы с одним входом и одним выходом получатся тогда как частный случай. Рассмотрим многомерную синхронную синфазную импульсную систему (рис.33). Импульсные элементы в этой схеме имеют одинаковые частоты квантования и работают синфазно. Пусть непрерывная часть системы описывается уравнением
где Матрицы A,B,C,D имеют следующие размерности: A-(n´n) матрица, B-(n´m) матрица, C-(r´n) матрица и D-(r´m) матрица. Графически уравнениям (53), (54) соответствует структурная схема, представленная на рис.34. Здесь и далее двойные стрелки на схеме указывают на то, что связи относятся к векторным величинам. Матрица A - основная или собственная матрица системы. Она определяет устойчивость системы, характер ее свободных движений Матрица B - матрица формирования управления. Она определяет передаточные свойства системы и характеристики вынужденного движения. Матрица C определяет связь между выходными переменными и переменными состояния, матрица D устанавливает непосредственную зависимость выходных координат системы от входных переменных, Рис. 34
Рассмотрим решение дифференциального уравнения (53) при заданных начальных условиях ![]()
где X(t) - произвольная фундаментальная матрица соответствующего однородного дифференциального уравнения. Выбрав в качестве X(t) нормированную фундаментальную матрицу (для стационарной системы она имеет вид
Предположим, что в качестве формирующего звена используется экстраполятор нулевого порядка. Тогда в течение каждого из интервалов квантования
Таким образом, получена система разностных уравнений в матричной форме, определяющая значения переменных состояния на k+1 такте через значения вектора состояния и вектора входных воздействий на предыдущем шаге. Векторное уравнение (56) можно представить в виде Дополняя его дискретным аналогом уравнения (54), получим окончательную систему разностных уравнений в виде
где Ф - собственная матрица импульсной системы,
Таким образом, получена система разностных уравнений, описывающая рассматриваемую импульсную систему.
3. Некоторые способы вычисления переходной матрицы. Из выражений для матриц Ф и Н, входящих в уравнение (57) легко видеть, что основные сложности при переходе от системы (53), (54) к системе разностных уравнений (57), (58) заключаются в вычислении собственной матрицы
при произвольных начальных условиях
где и тогда
Из последнего соотношения следует, что Существуют и другие аналитические методы нахождения матрицы Численные методы определения матрицы где Недостаток вычисления матрицы Ф по этому методу - плохая сходимость степенного разложения, которая вместе с учетом конечной разрядности ЭВМ может привести к существенным погрешностям в вычислениях (вплоть до неверного определения знака у элементов матрицы Ф). Лучшей сходимостью обладают алгоритмы, основанные на использовании степенных рядов, полученных в результате разложения по полиномам Чебышева [2]. Наконец, элементы матрицы Ф могут быть получены в результате повторного n -кратного численного решения дифференциального уравнения (59). После численного интегрирования в интервале от 0 до Т уравнения (59) для Лекция 13
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|