З. Периоперативная тошнота и рвота. 8 глава
2. Сравнение эффектов ингаляционных анестетиков на различные органы и с/с базируется на оценке эквивалентных по силе МАК каждого препарата. (Таб. 16-4).
3. Различные физиологические и фармакологические факторы изменяют МАК. (Таб.16-5).
II. Эффекты ингаляционных анестетиков на органы и с/с. А. ЦНС. 1. Летучие анестетики вызывают специфическое и дозо-зависимое повышение церебрального тока крови (ЦТК) вследствие их вазодилятирующего действия на сосуды мозга. (Фиг. 16-2) а. Закись азота - церебральный вазодилятатор, но его умеренная сила как анестетика связана с только умеренным повышением ЦТК. б. Повышение ЦТК вызывается летучими анестетиками, что со временем нормализуется. Н-р, ЦТК нормализуется после 2 часов применения галотана. 2. Летучие анестетики снижают церебральные метаболические потребности в кислороде (CMRO2), особенно изофлюран (снижение ЭЭГ около 2 МАК). ЦТК, при котором возникают признаки ишемии на ЭЭГ ниже при использовании изофлюрана, чем при использовании галотана, свидетельствуя о возможном церебропротективном действии изофлюрана. Изофлюран сопровождается лучшим отношением между CMRO2 и ЦТК, возможно из-за меньшего повышения ЦТК.
3. У пациентов со сниженным в/черепной растяжимостью лекарственно-индуцированная повышение ЦТК вызывает параллельное повышение ЦТК и ВЧД. Летучие анестетики могут изменять продукцию и реабсорбцию ликвора, но, как и ЦТК, эти эффекты нивелируются со временем. При наличии умеренной гипокапнии изофлюран менее вероятно вызовет потенциально опасное повышение ВЧД по сравнению с галотаном и энфлюраном. 4. Энфлюран вызывает дозо-зависимую спайковую активность на ЭЭГ, которая усиливается гипокапнией. 5. Летучие анестетики и закись азота вызывают снижение амплитуды и повышение скрытого состояния кортикального компонента соматосенсорных вызванных потенциалов. Б. Респираторная система. 1. Вентиляторные объемы и частота дыхания. Летучие анестетики вызывают специфическое и дозо-зависимое угнетение вентиляции, что проявляется повышением РаСО2. (Фиг. 16-3) а. Снижение дыхательного объема (ДО) - полностью не компенсируется повышением частоты дыхания (ЧД) (быстрое, поверхностное дыхание характеризует анестетическое состояние), так что альвеолярная вентиляции снижается. б. Добавление закиси азота к летучему анестетику приводит к меньшему подъему РаСО2 при той же общей МАК, как при использовании только летучего анестетика. 2. Эффекты на межреберные мышцы и диафрагму. паралич межреберных мышц при повышении дозы приводит к характерному изменению дыхания (западение гр. клетки и протрузия живота вследствие опускания диафрагмы при вдохе) при глубокой анестезии. 3. Химический контроль дыхания. Летучие анестетики вызывают дозо-зависимое снижение вентиляционного ответа на СО2, тогда как даже субанестетические концентрации (0,1 МАК) этих препаратов блокируют вентиляционный ответ на гипоксемию. Отсутствие гиперпноэ во время артериальной анестезии приводит к тому, что обычные клинические признаки гипоксии не могут быть надежными во время анестезии.
а. Вспомогательная вентиляция легких для выведение повышенного СО2 имеет ограниченную ценность, т.к. апноэ возникает при снижении РаСО2 5 мм Hg. б. Хирургическая стимуляция значимо повышает вентиляцию, снижая РаСо2 на 5 мм Hg. 4. Просвет дыхательных путей. Летучие анестетики одинаково эффективны в снижении сопротивления дыхательных путей, вызывая бронходилятацию. Все летучие анестетики одинаково эффективны у пациентов с астмой, хотя галотан м.б. предпочтительнее изофлюрана, т.к. последний имеет резкий запах, что может вызывать раздражение дыхательных путей. 5. Гипоксическая легочная вазоконстрикция. Летучие анестетики, назначаемые в клинических дозах, не снижают кроваток в плохо- или невентилируемых альвеолах. В. ССС. 1. Гемодинамика: летучие анестетики вызывают дозо-зависимое специфическое снижение АД вследствие снижения сердечного выброса (галотан, энфлюран) или снижения ОПСС (изофлюран). (Фиг. 16-4 и 16-5) а. Повышение ЧСС при назначении изофлюрана может отражать повышение активности барорецепторов в ответ на снижение АД. б. Распределение сердечного выброса изменяется анестетиками. Повышается ЦТК (галотан), кровоток в скелетной мускулатуре (изофлюран) и коже, снижается в почках, печени и ЖКТ. в. Добавление закиси азота к летучему анестетику приводить к меньшему снижению АД при одинаковой общей МАК. г. Закись азота вызывает небольшой симпатомиметический эффект, проявляющийся повышением ОПСС и легочного сосудистого сопротивления. При добавлении высоких доз опиоидов закись азота может снизить АД и сердечный выброс. 2. Аритмии сердца, проводимость и взаимодействие лекарств. Изофлюран и энфлюран меньше чем галотан вызывают аритмии сердца при наличии в плазме повышенного уровня адреналина. (Фиг. 16-6). а. У детей адреналин-индуцированные аритмии развиваются реже. б. Летучие анестетики оказывают прямое угнетающее действие на СА-узел. Проводимость сохраняется через нормальные пути лучше при использовании изофлюрана, чем при использовании энфлюрана и галотана. в. Депрессия миокарда вызывается летучим анестетиками, может усиливаться при использовании БКК или b-антагонистов.
3. Коронарный кровоток. Изофлюран может изменять отношение между коронарным кровотоком и потребностями миокарда в О2 в большей степени, чем др. летучие анестетики. Индуцированная им вазодилятация интрамиокардиальных артериол, особенно при сниженном коронарном перфузионном давлении и критической анатомической локализации стеноза коронарной артерии может направить кровоток в непораженные области миокарда (феномен обкрадывания). Г. Почечные эффекты главным образом отражают изменения почечного кровотока. Анестезия обычно снижает почечный кровоток, скорость клубочковой фильтрации и диурез. Д. Летучие анестетики оказывают миорелаксирующее действие, а также усиливают действие недеполяризующих релаксантов. Механизм потенциирования может включать десенсибилизацию постсинаптической мембраны или изменения мышечного кровотока. Наиболее выражен этот эффект у изофлюрана и энфлюрана, промежуточный у галотана и наименьший у закиси азота. Е. Релаксация матки сопровождает применение всех летучих анестетиков и может способствовать снижению маточного кровотока при анестезии беременных. Ингаляционные препараты проникают через плаценту и оказывают аналогичное действие на плод. Глава 17. Метаболизм и токсичность ингаляционных анестетиков. Ингаляционные анестетики (ИА) метаболизируются гл. образом в печени оксидазами. Окислительные реакции характеризуются гл. образом дегалогенизацией и О-деалкилированием. Метаболизм ИА значим для гепато -, нефротоксичности, мутагенности, тератогенности.
I. Метаболизм. Исследования массового баланса (общее поступление - общее выведение) показывают большие цифры метаболизма, чем при исследовании, основанных на определении экскретируемых метаболитов. (Таб. 17-1)
А. Закись азота. Бактерии ЖКТ только малую часть (0,004%) абсорбированной закиси азота переводят в азот. Метаболизм закиси ингибируется антибиотиками и концентрацией О2 в ЖКТ > 10%.
Б. Галотан. 1. Окисленные метаболиты - бромид, хлорид, трифторуксусная кислота. 2. Восстановленные метаболиты - фторид и летучие продукты, образующиеся путями, из которых свободные радикалы и др. высокоактивные промежуточные метаболиты могут возникать. эти метаболиты могут связываться с макромолекулярными структурами клеток и вызывать их последующую деструкцию. Восстановительный метаболизм галотана рассматривается как причина острой гепатотоксичности галотана. В. Энфлюран. Окисленные метаболиты - фторид, дифторметоксидифторуксусная кислота, фторхлоруксусная кислота. Дефторирование повышено у пациентов с ожирением, или получающих изониазид. Г. Изофлюран минимально окисляется до фторида и трифторуксусной кислоты. С этим связано минимальная органная токсичность изофлюран.
II. Токсичность Токсичность отражает прямое воздействие препарата или его метаболитов на печень, почки, репродуктивную с/с. Нет доказательств того, что все ИА действуют как мутагены или тератогены. А. Галотан-ассоциированная дисфункция печени наиболее часто возникает после повторного назначения препарата женщинам ср. возраста с ожирением. Механизм этого мультифакториальный.(Таб. 17-2)
Б. Фторид-индуцированная нефротоксичность характеризуется полиурией и невозможностью концентрировать мочу. Токсическое действие на почечные канальцы возникают особенно при плазменной концентрации > 50 мкмоль/л. (Таб. 17-3).
1. Экспозиция 2,5 МАК в течение часа приводит к концентрации фторида в сыворотке около 22 мкмоль/л. 2. Нет доказанного снижения почечных функций у пациентов с хр. почечной патологией, подлежащих операции и получающих энфлюран. В. Репродуктивные эффекты. Повышена частота спонтанных абортов у женщин - персонала операционных. Хотя не доказано, хр. контакт со следовыми концентрациями ИА, особенно закиси азота, часто рассматривается как причина (см. Гл.6). По этой причине, общая практика - отводить избыток газов из операционной. Несмотря на эту практику, нет данных, что это снижает частоту спонтанных абортов.
Г. Закись азота - уникальный среди всех ИА, т.к. блокирует метионин-синтетазу, окисляя атом кобальта витамина В12. Отсюда, взаимодействие с синтезом ДНК связано с развитием угнетения костного мозга и полинейропатии, что сходно с пернициозной анемией. 1. Следовые концентрации закиси азота не ингибируют активность метионин-синтетазы. 2. Закись азота и ИА вызывают дозо-зависимое угнетение хемотаксиса полиморфноядерных лейкоцитов и последующего фагоцитоза, необходимых для воспалительного ответа на инфекцию. Однако нет данных, что ИА предрасполагают к бактериальной инфекции.
Глава 18. Миорелаксанты. Миорелаксанты - препараты, которые первично и специфически нарушают нервно-мышечную передачу.
I. Клинические требования к миорелаксантам. МР - не анестетики и не д.б. использованы для маскировки движений скелетных мышц у неадекватно анестезированного пациента. Правильно назначенные, МР обеспечивают безопасность пациента и оптимизируют хирургическое состояние. Решение об использовании МР как части общей анестезии базируется на основании многих факторов (Таб. 18-1).
II. Физиология нейромышечной передачи.
А. Процесс сокращения скелетной мышцы начинается из нейромышечного соединения (НМС) с освобождения ацетилхолина (АХ). Анатомически НМС - синапс между пресинаптической мембраной окончания мотонейрона и постсинаптической мембраной скелетного мышечного волокна.(Фиг. 18-1). Б. Доступность АХ. Места для освобождения АХ из нервных терминалей возникают в проекции нервной мембраны в непосредственной близости от постсинаптической мембраны, что обеспечивает быструю активацию рецептора. Активация постсинаптической мембраны требует одновременной оккупации 2 рецепторных a - субъединиц ацетилхолином. В. АХ гидролизуется антихолинэстеразой (АХЭ) до холина (используется для синтеза нового АХ) и ацетата. Г. Мышечное сокращение возникает, когда АХ-индуцированные изменения трансмембранной клеточной проницаемости приводит к движению натрия в клетку, достаточного для деполяризации и вызывания потенциала действия. Распространение потенциала действия инициирует освобождение Са из саркоплазматического ретикулюма в саркоплазму, где активация миозинового АТФ (АТФ-аза) ведет к сопряжению напряжения-сокращения в миофиламентах.
III. Нейромышечные блокирующие препараты. Нейромышечные блокирующие препараты классифицируются на деполяризующие и недополяризующие в зависимости от их эффектов на НМС (Таб. 18-2).
А. Деполяризующие. Сукцинилхолин (СХ) - прототипический деполяризующий миорелаксант, содержащий 2 молекулы АХ, соединенные вместе. Он имитирует эффекты АХ, формируя сильную связь с a-субъединицами постсинаптической мембраны. Возникшая персистирующая деполяризация вследствие поддержания открытыми трансмембранных каналов предотвращает распространение потенциала действия и вызывает паралич скелетных мышц. 1. Мониторинг деполяризующего блока (см. Гл. 8). СХ вызывает особенности, характеризуемые как 1-я фаза деполяризующего блока (Таб. 18-3).
а. Тетанус. Постоянная электрическая стимуляция в течение 5 секунд с частотой 50 Гц - сильный стимул для освобождения АХ в НМС. Подтвержденный ответ тетануса есть, когда train-of-four (TOF) отношение > 0,7. б. Train-of-four. 4 импульса по 2 Гц каждые 5 секунд использует концепцию, что АХ истощается стимуляцией. Только 4 стимула необходимы, т.к. дополнительная стимуляция снижает дальнейшее освобождение АХ. TOF отношение > 0,7 (отношение высоты 4-го сокращения к 1-му сокращению) коррелирует с возвратом ответа для контроля (?). в. Посттетаническое облегчение. В конце тетануса имеется повышение доступности АХ, так что последующее сокращение м.б. транзиторно повышенным. 2. Метаболизм СХ. Плазменная холинэстераза (ПХЭ) имеет огромной способностью для гидролиза СХ в плазме до относительно неактивных метаболитов, сукцинилмонохолина (1/20-1/80 по силе слабее СХ) и холина. Гидролиз СХ в плазме ограничивает небольшую фракцию начальной в/в дозы, которая проникает в НМС. а. СХ в в/в дозе 0,5-1, мг/кг оказывает быстрое (через 30-60 сек) и короткое (5-10 мин) действие. б. Длительность блока определяется начальной дозой СХ, которая, избегая ПХЭ, проникает в НМС. в. Низкая активность ПХЭ сопровождает цирроз печени, беременность, первые 6 мес жизни, применение всех антихолинэстеразных средств. г. Атипичный фермент ПХЭ генетически детерминирован, что замедляет гидролиз СХ у гетерозигот. У гомозигот гидролиз близок к нулю. Такие больные зависят от скорости клубочковой фильтрации СХ, поэтому у них длительность действия СХ > 120 мин после интубационной дозы. 3. Фаза-2 блока характеризуется увяданием тетануса или TOF стимуляции, как и посттетанического облегчения в ответе на единичный стимул. Механизм фазы-2 неопределенный, но может отражать частичную окклюзию Na-каналов, переводящей их к невозбудимости (десенситизации) позже обычной продолжительности связи СХ с рецепторами. 4. Двойной блок развивается при одновременном обоих фаз блока во время или после назначения СХ. Признаки развития двойного блока - развитие тахифилаксии во время продленной инфузии СХ. 5. Автономные эффекты. СХ имитирует действие АХ в автономных ганглиях (повышение АД и ЧСС) и постганглионарных холинэргических нервных окончаниях в сердце (брадикардия, особенно у детей). Атропин, назначенный в/в, часто рекомендуется перед назначением СХ детям или младенцам для предотвращения или ослабления СХ-индуцированной брадикардии. Повторные болюсные дозы могут привести к брадикардии, особенно, если интервал между инъекциями - 4-5 мин. 6. Гиперкалиемия. К плазмы может повыситься на 0,5-1 ммоль/л. а. СХ-индуцированное освобождение К усиливается патологическими изменениями, которые взаимодействуют с целостностью мышечных клеточных мембран или приводят к пролиферации внесинаптических холинэргических рецепторов. (Таб. 18-4).
б. Точный период уязвимости к СХ-индуцированному освобождению К не установлен, но рекомендуется избегать препарат между 1 днем и 6-12 мес после повреждения. 7. В добавление к высвобождению К, назначение СХ сопровождается др. потенциальными осложнениями. Таб. 18-5.
Б. Недеполяризующие миорелаксанты (НМР) связываются с постсинаптическими холинергическими рецепторами и предотвращают активацию Na-каналов ацетилхолином. В результате деполяризация не возникает и миорелаксация продолжается до тех пор, пока хотя бы 1 молекула НМР связана с a-субъединицей рецептора. НМР могут также действовать на пресинапсе, блокируя Na-каналы, что снижает освобождение АХ. Как СХ, все НМР - четвертичные аммониевые основания и содержат, по крайней мере, 1 положительно заряженную аминную группу, которая связывается с рецептором. В отличие от линейной структуры СХ, НМР - большие и имеют жесткую кольцевую структуру, которая скрывает присутствие АХ-половины. Стереоспецифическая связь НМР с рецептором способствует пролонгированной связи с отделением и повторном присоединением путем диффузией, пока массовое действие АХ не восстановит нейромышечную передачу. 1. Нейромышечная грань безопасности подчеркивает, что много рецепторов м.б. заняты без признаков ухудшения нейромышечной передачи. (Таб. 18-6).
2. Мониторинг недеполяризующего блока (см. Гл. 8). НМР вызывают характерные особенности, обусловленные эффектами на пресинаптические (TOF и тетанус) и постсинаптические мембраны (высота потенциала). (Таб. 18-7)
3. Клиническое использование НМР. Выбор НМР зависит от многих факторов. (Таб. 18-8, 18-9, 18-10).
* ЭД 95 - эффективная доза для снижения потенциала ответа на 95%
4. Вегетативные и гистамино-освобождающие побочные эффекты. Вегетативное действие НМР отражает взаимодействие с действием АХ в вегетативных ганглиях, т.к. АХ - медиатор как в НМС, так и в вегетативных ганглиях. Освобождение гистамина, вызванное НМР, не имеет под собой иммунологической основы, чаще это неспецифический выход гистамина и, возможно, др вазоактивных субстанций из тучных клеток, особенно если НМР вводится быстро в/в в больших дозах. (Таб. 18-11).
а. Структуро-активное отношение. Бис-четвертичные МР (метокурин, панкурониум) в отличие от моночетвертичных (d-тубокурарин) оказывают незначительное ганглио-блокирующее и гистамино-высвобождающее действие. б. Сердечно-сосудистое побочное действие НМР отражает освобождение гистамина со снижением ОПСС или ваголитический эффект с умеренным повышением ЧСС и АД (панкурониум). 5. Метаболизм НМР.(Таб. 18-12).
Как четвертичные аммониевые основания, длительно-действующие НМР водорастворимы и высоко ионизированы; следовательно, не реабсорбируются в почках, так что почечный клиренс зависит от скорости клубочковой фильтрации. Панкурониум может экскретироваться с желчью и это единственный длительно-действующий НМР, который превращается в менее активный метаболит в печени. Пациенты с циррозом печени требуют больше, чем установленные, начальных доз панкурониума (повышенный объем распределения) и сниженных доз поддержания (как результат снижения метаболизма). 6. Аллергические реакции могут отражать перекрестную сенсибилизацию между СХ и НМР, особенно у пациентов с циркулирующими а/телами класса Е к четвертичным аммониевым группам, общим для всех МР. С. НМР промежуточного действия. 1. Атракуриум. Был синтезирован специально для подвергания температурно- и рН-зависимому гидролизу (элиминация Хоффмана) в плазме (ингибируется при ацидозе и низкой температуре). Атракуриум также подвергается эфирному гидролизу независимо от плазменной холинэстеразы (ПХЭ). Лаудонозин - растворимый в липидах метаболит атракуриума, который в высоких концентрациях (маловероятно в клинических условиях) может вызвать стимуляцию ЦНС. б. Освобождение гистамина. Быстрое в/в введение 2,5-3,0 х ЕД 95 атракуриума может вызвать значимое освобождение гистамина, снижающее на 20% АД. Введение той же дозы в течение 45-60 секунд снижает освобождение гистамина и сопутствующие изменения АД.
Воспользуйтесь поиском по сайту: ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|