Частота, или статистическая вероятность, события
Формула (2.2.1) для непосредственного подсчета вероятностей применима только, когда опыт, в результате которого может появиться интересующее нас событие, обладает симметрией возможных исходов (сводится к схеме случаев). Очевидно, что далеко не всякий опыт может быть сведен к схеме случаев, и существует обширный класс событий, вероятности которых нельзя вычислить по формуле (2.2.1). Рассмотрим, например, неправильно выполненную, несимметричную игральную кость. Выпадение определенной грани уже не будет характеризоваться вероятностью 1/6; вместе с тем ясно, что для данной конкретной несимметричной кости выпадение этой грани обладает некоторой вероятностью, указывающей, насколько часто в среднем должна появляться данная грань при многократном бросании. Очевидно, что вероятности таких событий, как «попадание в цель при выстреле», «выход из строя радиолампы в течение одного часа работы» или «пробивание брони осколком снаряда», также не могут быть вычислены по формуле (2.2.1), так как соответствующие опыты к схеме случаев не сводятся. Вместе с тем ясно, что каждое из перечисленных событий обладает определенной степенью объективной возможности, которую в принципе можно измерить численно и которая при повторении подобных опытов будет отражаться в относительной частоте соответствующих событий. Поэтому мы будем считать, что каждое событие, связанное с массой однородных опытов, - сводящееся к схеме случаев или нет, - имеет определенную вероятность, заключенную между нулем и единицей. Для событий, сводящихся к схеме случаев, эта вероятность может быть вычислена непосредственно по формуле (2.2.1). Для событий, не сводящихся к схеме случаев, применяются другие способы определения вероятностей. Все эти способы корнями своими уходят в опыт, в эксперимент, и для того, чтобы составить представление об этих способах, необходимо уяснить себе понятие частоты события и специфику той органической связи, которая существует между вероятностью и частотой.
Если произведена серия из опытов, в каждом из которых могло появится или не появиться некоторое событие , то частотой события в данной серии опытов называется отношение числа опытов, в которых появилось событие , к общему числу произведенных опытов. Частоту события часто называют его статистической вероятностью (в отличие от ранее введенной «математической» вероятности). Условимся обозначать частоту (статистическую вероятность) события знаком . Частота события вычисляется на основании результатов опыта по формуле , (2.3.1) где – число появления события ; – общее число произведенных опытов. При небольшом числе опытов частота события носит в значительной мере случайный характер и может заметно изменяться от одной группы опытов к другой. Например, при каких-то десяти бросаниях монеты вполне возможно, что герб появится только два раза (частота появления герба будет равна 0,2); при других десяти бросаниях мы вполне можем получить 8 гербов (частота 0,8). Однако при увеличении числа опытов частота все более теряет случайный характер; случайные обстоятельства, свойственные каждому отдельному опыту, в массе взаимно погашаются, и частота проявляет тенденцию стабилизироваться, приближаясь с незначительными колебаниями к некоторой средней, постоянной величине. Например, при многократном бросании монеты частота появления герба будет лишь незначительно уклоняться от ½. Это свойство «устойчивости частот», многократно проверенное экспериментально и подтверждающееся всем опытом практической деятельности человечества, есть одна из наиболее характерных закономерностей, наблюдаемых в случайных явлениях. Математическую формулировку этой закономерности впервые дал Я. Бернулли в своей теореме, которая представляет собой простейшую форму закона больших чисел. Я. Бернулли доказал, что при неограниченном увеличении числа однородных независимых опытов с практической достоверностью можно утверждать, что частота события будет сколь угодно мало отличаться от его вероятности в отдельном опыте.
Связь между частотой события и его вероятностью – глубокая, органическая связь. Эти два понятия по существу неразделимы. Действительно, когда мы оцениваем степень возможности какого-либо события, мы неизбежно связываем эту оценку с большей или меньшей частотой появления аналогичных событий на практике. Характеризуя вероятность события каким-то числом, мы не можем придать этому числу иного реального значения и иного практического смысла, чем относительная частота появления данного события при большом числе опытов. Численная оценка степени возможности события посредством вероятности имеет практический смысл именно потому, что более вероятные события происходят в среднем чаще, чем менее вероятные. И если практика определенно указывает на то, что при увеличении числа опытов частота события имеет тенденцию выравниваться, приближаясь сквозь ряд случайных уклонений к некоторому постоянному числу, естественно предположить, что это число и есть вероятность события. Проверить такое предположение мы, естественно, можем только для таких событий, вероятности которых могут быть вычислены непосредственно, т.е. для событий, сводящихся к схеме случаев, так как только для этих событий существует точный способ вычисления математической вероятности. Многочисленные опыты, производящиеся со времен возникновения теории вероятностей, действительно подтверждают это предположение. Они показывают, что для события, сводящегося к схеме случаев, частота события при увеличении числа опытов всегда приближается к его вероятности. Вполне естественно допустить, что и для события, не сводящегося к схеме случаев, тот же закон остается в силе и что постоянное значение, к которому при увеличении числа опытов приближается частота события, представляет собой не что иное, как вероятность события. Тогда частоту события при достаточно большом числе опытов можно принять за приближенное значение вероятности. Так и поступают на практике, определяя из опыта вероятности событий, не сводящихся к схеме случаев.
Следует отметить, что характер приближения частоты к вероятности при увеличении числа опытов несколько отличается от «стремления к пределу» в математическом смысле этого слова. Когда в математике мы говорим, что переменная с возрастанием стремиться к постоянному пределу , то это означает, что разность становится меньше любого положительного числа для всех значений , начиная с некоторого достаточно большого числа. Относительно частоты события и его вероятности такого категорического утверждения сделать нельзя. Действительно, нет ничего физически невозможного в том, что при большом числе опытов частота события будет значительно уклоняться от его вероятности; но такое значительное уклонение является весьма маловероятным, тем менее вероятным, чем большее число опытов произведено. Например, при бросании монеты 10 раз физически возможно (хотя и маловероятно), что все 10 раз появится герб, и частота появления герба будет равна 1; при 1000 бросаниях такое событие все еще остается физически возможным, но приобретает настолько малую вероятность, что его смело можно считать практически неосуществимым. Таким образом, при возрастании числа опытов частота приближается к вероятности, но не с полной достоверностью, а с большой вероятностью, которая при достаточно большом числе опытов может рассматриваться как практическая достоверность. В теории вероятностей чрезвычайно часто встречается такой характер приближения одних величин к другим, и для его описания введен специальный термин: «сходимость по вероятности». Говорят, что величина сходится по вероятности к величине , если при сколь угодно малом вероятностьнеравенства с увеличением неограниченно приближается к единице.
Применяя этот термин, можно сказать, что при увеличении числа опытов частота события не «стремится» квероятности события, а «сходится к ней по вероятности». Это свойство частоты и вероятности, изложенное здесь пока без достаточных математических оснований, просто на основании практики и здравого смысла, составляет содержание теоремы Бернулли, которая будет доказана нами в дальнейшем (см. гл. 13). Таким образом, вводя понятие частоты события и пользуясь связью между частотой и вероятностью, мы получаем возможность приписать определенные вероятности, заключенные между нулем и единицей, не только событиям, которые сводятся к схеме случаев, но и тем событиям, которые к этой схеме не сводятся; в последнем случаевероятность события может быть приближенно определена по частоте события при большом числе опытов. В дальнейшем мы увидим, что для определения вероятности события, не сводящегося к схеме случаев, далеко не всегда необходимо непосредственно определять из опыта его частоту. Теория вероятностей располагает многими способами, позволяющими определять вероятности событий косвенно, через вероятности других событий, с ними связанных. В сущности, такие косвенные способы и составляют основное содержание теории вероятностей. Однако и при таких косвенных методах исследования, в конечном счете, все же приходится обращаться к экспериментальным данным. Надежность и объективная ценность всех практических расчетов, выполненных с применением аппарата теории вероятностей, определяется качеством и количеством экспериментальных данных, на базе которых этот расчет выполняется. Кроме того, при практическом применении вероятностных методов исследования всегда необходимо отдавать себе отчет в том, действительно ли исследуемое случайное явление принадлежит к категории массовых явлений, для которых, по крайней мере, на некотором участке времени, выполняется свойство устойчивости частот. Только в этом случае имеет смысл говорить о вероятностных событиях, имея в виду не математические фикции, а реальные характеристики случайных явлений. Например, выражение «вероятность поражения самолета в воздушном бою для данных условий равна 0,7» имеет определенный конкретный смысл, потому что воздушные бои мыслятся как массовые операции, которые будут неоднократно повторяться в приблизительно аналогичных условиях. Напротив, выражение «вероятность того, что данная научная проблема решена правильно, равна 0,7» лишено конкретного смысла, и было бы методологически неправильно оценивать правдоподобие научных положений методами теории вероятностей.
Случайная величина Одним из важнейших основных понятий теории вероятностей является понятие о случайной величине. Случайной величиной называется величина, которая в результате опыта может принять то или иное значение, причем неизвестно заранее, какое именно. Примеры случайных величин: 1) число попаданий при трех выстрелах; 2) число вызовов, поступавших на телефонную станцию за сутки; 3) частота попадания при 10 выстрелах. Во всех трех приведенных примерах случайные величины могут принимать отдельные, изолированные значения, которые можно заранее перечислить. Так, в примере 1) эти значения: 0, 1, 2, 3; в примере 2): 1,2, 3, 4, …; в примере 3) 0; 0,1; 0,2; …; 1,0. Такие случайные величины, принимающие только отделенные друг от друга значения, которые можно заранее перечислить, называются прерывными или дискретными случайными величинами. Существуют случайные величины другого типа, например: 1) абсцисса точки попадания при выстреле; 2) ошибка взвешивания тела на аналитических весах; 3) скорость летательного аппарата в момент выхода на заданную высоту; 4) вес наугад взятого зерна пшеницы. Возможные значения таких случайных величин не отделены друг от друга; они непрерывно заполняют некоторый промежуток, который иногда имеет резко выраженные границы, а чаще – границы неопределенные, расплывчатые. Такие случайные величины, возможные значения которых непрерывно заполняют некоторый промежуток, называются непрерывными случайными величинами. Понятие случайной величины играет весьма важную роль в теории вероятностей. Если «классическая»теория вероятностей оперировала по преимуществу с событиями, то современная теория вероятностей предпочитает, где только возможно, оперировать со случайными величинами. Приведем примеры типичных для теории вероятностей приемов перехода от событий к случайным величинам. Производится опыт, в результате которого может появиться или не появиться некоторое событие . Вместо события можно рассмотреть случайную величину , которая равна 1, если событие происходит, и равна 0, если событие не происходит. Случайная величина , очевидно, является прерывной; она имеет два возможных значения: 0 и 1. Эта случайная величина называется характеристической случайной величиной события . На практике часто вместо событий оказывается удобнее оперировать их характеристическими случайными величинами. Например, если производится ряд опытов, в каждом из которых возможно появление события , то общее число появлений события равно сумме характеристических случайных величин события во всех опытах. При решении многих практических задач пользование таким приемом оказывается очень удобным. С другой стороны, очень часто для вычисления вероятности события оказывается удобно связать это событие с какой-то непрерывной случайной величиной (или системой непрерывных величин). Рис. 2.4.1. Пусть, например, измеряются координаты какого-то объекта О для того, чтобы построить точку М, изображающую этот объект на панораме (развертке) местности. Нас интересует событие , состоящее в том, что ошибка R в положении точки М не превзойдет заданного значения (рис. 2.4.1). Обозначим случайные ошибки в измерении координат объекта. Очевидно, событие равносильно попаданию случайной точки М с координатами в пределы круга радиуса с центром в точке О. Другими словами, для выполнения события случайные величины и должны удовлетворять неравенству . (2.4.1) Вероятность события есть не что иное, как вероятность выполнения неравенства (2.4.1). Эта вероятность может быть определена, если известны свойства случайных величин . Такая органическая связь между событиями и случайными величинами весьма характерна для современнойтеории вероятностей, которая, где только возможно, переходит от «схемы событий» к «схеме случайных величин». Последняя схема сравнительно с первой представляет собой гораздо более гибкий и универсальный аппарат для решения задач, относящихся к случайным явлениям.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|