Назначение основных теорем. Сумма и произведение событий
В предыдущей главе мы познакомились со способами непосредственного определения вероятностей, а именно: с классической формулой для вероятности события, сводящегося к схеме случаев, и со способом приближенного определения вероятности по частоте для события, которое к схеме случаев не сводится. Однако не эти непосредственные способы являются основными в теории вероятностей: их применение не всегда удобно и не всегда возможно. Даже когда событие сводится к схеме случаев, зачастую эта схема бывает слишком сложна, и непосредственный подсчет вероятности по формуле (2.2.1) становится чрезмерно громоздким. Что касается событий, не сводящихся к схеме случаев, то и их вероятности лишь в редких случаях определяются непосредственно по частотам. На практике обычно требуется определять вероятности событий, непосредственное экспериментальное воспроизведение которых затруднено. Например, если требуется определить вероятностьпоражения самолета в воздушном бою, ясно, что определение этой вероятности по частоте практически невозможно. И не только потому, что такие опыты оказались бы непомерно сложными и дорогостоящими, а еще и потому, что часто нам требуется оценить вероятность того или иного исхода боя не для существующих образцов техники, а для перспективных, проектируемых. Обычно такая оценка и производится для того, чтобы выявить наиболее рациональные конструктивные параметры элементов перспективной техники. Поэтому, как правило, для определения вероятностей событий применяются не непосредственные прямые методы, а косвенные, позволяющие по известным вероятностям одних событий определять вероятности других событий, с ними связанных. Вся теория вероятностей, в основном, и представляет собой систему таких косвенных методов, пользование которыми позволяет свести необходимый эксперимент к минимуму.
Применяя эти косвенные методы, мы всегда в той или иной форме пользуемся основными теоремамитеории вероятностей. Этих теорем две: теорема сложения вероятностей и теорема умножения вероятностей. Строго говоря, оба эти положения являются теоремами и могут быть доказаны только для событий, сводящихся к схеме случаев. Для событий, не сводящихся к схеме случаев, они принимаются аксиоматически, как принципы или постулаты. Перед тем, как формулировать и доказывать основные теоремы, введем некоторые вспомогательные понятия, а именно понятия о сумме событий и произведении событий. Во многих областях точных наук применяются символические операции над различными объектами, которые получают свои названия по аналогии с арифметическими действиями, рядом свойств которых они обладают. Таковы, например, операции сложения и умножения векторов в механике, операции сложения и умножения матрицв алгебре и т.д. Эти операции, подчиненные известным правилам, позволяют не только упростить форму записей, но в ряде случаев существенно облегчают логическое построение научных выводов. Введение таких символических операций над событиями оказывается плодотворным и в теории вероятностей. Суммой двух событий Например, если событие Если события
Короче, суммой двух событий Суммой нескольких событий называется событие, состоящее в появлении хотя бы одного из этих событий. Например, если опыт состоит в пяти выстрелах по мишени и даны события:
то есть событие «не более двух попаданий», а есть событие «не менее трех попаданий». Произведением двух событий Например, если событие Произведением нескольких событий называется событие, состоящее в совместном появлении всех этих событий. Например, если по мишени производится три выстрела, и рассматриваются события
то событие состоит в том, что в мишень не будет ни одного попадания. При определении вероятностей часто приходится представлять сложные события в виде комбинаций более простых событий, применяя и операцию сложения, и операцию умножения событий. Например, пусть по мишени производится три выстрела, и рассматриваются следующие элементарные события:
Рассмотрим более сложное событие
Событие
Такие приемы представления сложных событий часто применяются в теории вероятностей. Непосредственно из определения суммы и произведения событий следует, что Если событие При пользовании понятиями суммы и произведения событий часто оказывается полезной наглядная геометрическая интерпретация этих понятий. Рис. 3.1.1. Рис. 3.1.2. На рис. 3.1.1 наглядно иллюстрированы понятия суммы и произведения двух событий. Если событие
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|