Ошибки репрезентативности и теоретические основы их определения
В статистике принято называть совокупность отобранных единиц выборочной совокупностью (n), а совокупность единиц, из которых производится отбор – генеральной совокупностью (N). Генеральная и выборочная совокупности характеризуются такими показателями как средний размер признака, дисперсия, доля. Задача выборочного наблюдения – дать верное представление о показателях всей генеральной совокупности на основе данных их некоторой части, попавшей в выборку. Естественно, что когда изучают не всю, а только часть совокупности, результаты расчетов показателей выборочной и генеральной совокупности не совпадают. Эти отклонения выборочной средней и выборочной доли от доли и средней в генеральной совокупности называются ошибками выборки, или ошибками репрезентативности. Ошибки репрезентативности – это специфические ошибки, присущие только выборке и появляются они вследствие расхождения структуры выборочной и генеральной совокупности. Как уже отмечалось, при выборочном наблюдении имеют место и ошибки регистрации, но они незначительны. Основной организационный принцип выборочного наблюдения состоит в том, чтобы не допустить тенденциозного подбора выборочной совокупности, т.е. обеспечить строгое соблюдение принципа случайности отбора единиц в выборку. На результаты выборочного наблюдения можно полагаться именно благодаря тому, что отбор носит случайный характер. Это и позволяет максимально сократить возможные пределы отклонений выборочных результатов от показателей, вычисленных по всей генеральной совокупности. Обобщенное действие механизма случайности в математике представляет закон больших чисел. Теория выборочного метода, основывается на доказательствах теорем русских математиков П.Л. Чебышева и А.М. Ляпунова. Из сущности закона больших чисел вытекает:
1) хотя каждая выборочная средняя и доля являются случайной величиной, однако средняя арифметическая из всех выборочных средних равняется генеральной средней; 2) каждый из возможных результатов выборочного наблюдения имеет свою вероятность появления, которая зависит от доли индивидуальных значений в генеральной совокупности. Чем больше доля индивидуальных показателей в генеральной совокупности, тем выше вероятность этих значений попасть в выборку; 3) каждая выборочная средняя отличается от генеральной средней. Разница между выборочной и генеральной средними представляет собой ошибку репрезентативности (выборки). Последняя измеряется средним квадратом отклонений всех возможных значений выборочных средних от генеральной средней, т.е. дисперсией. В математической статистике доказывается, что между дисперсией выборочных средних и генеральной дисперсией существует определенное соотношение. Дисперсия выборочных средних равна отношению генеральной дисперсии к численности выборочной совокупности. Корень квадратный из этого отношения представляет собой стандартную (среднюю) ошибку репрезентативности (выборки):
.
Эта величина средней ошибки играет огромную роль в теории выборочного метода. Знание ее позволяет определять размер конкретных выборок и сказать какая выборка будет лучше еще до самой работы по выборочному обследованию. Если выборочное обследование проводится с целью определения доли единиц, обладающих изучаемым признаком, то используются те же формулы расчетов, но в этом случае средняя и дисперсия заменяются аналогичными показателями альтернативного признака. Отсюда средняя ошибка выборки равна: ,
где – доля единиц, обладающих данным признаком в выборочной совокупности.
Из приведенной формулы видно, что величина средней ошибки выборки зависит от вариации признака в генеральной совокупности, которая характеризуется дисперсией, и объема выборочной совокупности. Чем сильнее колеблется изучаемый признак у единиц генеральной совокупности, тем больше дисперсия, а отсюда и больше ошибка выборки, и, наоборот, чем больше объем выборочной совокупности, тем меньше ошибка выборки. При организации выборки величина колеблемости признака в генеральной совокупности (N) неизвестна. В математической статистике доказано, что соотношение между дисперсиями генеральной и выборочной совокупностей выражается формулой:
.
Поскольку величина при достаточно большой численности выборки близка к 1, то приближенно считают, что выборочная дисперсия равна генеральной дисперсии, т.е. , и в формуле средней ошибки выборки генеральная дисперсия заменяется выборочной. 4) при достаточно большом объеме выборки распределение средних вокруг генеральной средней подчинено закону нормального распределения. Это означает, что отклонение от генеральной средней расположено в ту или другую сторону симметрично. Если взять одно среднее квадратическое отклонение в ту или другую сторону, то тем самым будет принято во внимание 68,3% всех выборочных средних, т.е. выборочная средняя не отклонится в ту или другую сторону на одну сигму. Если взять два средних квадратических отклонения, то во внимание будет принято 95,4% всех выборочных средних, если взять три средних квадратических отклонения – 99,7% средних. Зная среднюю ошибку выборки и вероятности с какой уверенностью хотят гарантировать результаты выборочного наблюдения можно установить пределы ошибок. ,
где – предельная ошибка выборки; – коэффициент доверия. Коэффициент доверия выражает число средних ошибок, которые нужно взять, чтобы получить заданную вероятность. Так при вероятности 0,683 , при вероятности 0,954 , при вероятности 0,997 . При выборочном наблюдении утверждения носят ориентировочный характер и выборочные показатели выражаются в интервале от и до. Границы этих интервалов называются доверительными пределами. Нижний доверительный предел равен выборочной средней (доли) минус ошибка выборки.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|