Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Экзаменационный билет №17.




1 Вопрос. Сосуды микроциркуляторного русла. Морфо-функциональная характе-ристика. Капилляры. Строение. Органные особенности строения капилляров. Понятие о гистогематическом барьере. Строение аэрогематического барьера в легких.

МИКРОЦИРКУЛЯТОРНОЕ РУСЛО включает артериолы, капилляры, венулы, артериоловенулярные анастомозы и лимфатические капилляры. ФУНКЦИЯМИ МИКРОЦИРКУЛЯТОРНОГО РУСЛА являются: 1) обмен веществ и газов; 2) регулировка кровотока; 3) депонирование крови; 4) дренаж тканевой жидкости.

ГЕМОКАПИЛЛЯРЫ в зависимости от того, в каких органах они находятся, могут иметь различный диаметр. Самые мелкие капилляры (диаметр 4-7 мкм) находятся в поперечнополосатых мышцах, легких, нервах. Более широкие капилляры (диаметр 8-11 мкм) находятся в коже и слизистых оболочках. Еще более широкие капилляры-синусоиды (диаметр 20-30 мкм) располагаются в органах кроветворения, эндокринных железах, печени. Самые широкие капилляры-лакуны (диаметр более 30 мкм) располагаются в столбчатой зоне прямой кишки и в пещеристых телах полового члена.

СТЕНКА капилляров состоит из трех слоев: 1) эндотелия, 2) слоя перицитов и 3) слоя адвентициальных клеток. СЛОЙ ЭНДОТЕЛИЯ состоит из уплощенных клеток полигональной формы различных размеров (длиной от 5 до 75 мкм). На люминальной поверхности (поверхности, обращенной в просвет сосуда), покрытой плазмолеммальным слоем (гликокаликсом), имеются микроворсинки, увеличивающие поверхность клеток. Цитолемма эндотелиоцитов образует множество кавеол, в цитоплазме множество пиноцитозных пузырьков. Микроворсинки и пиноцитозные пузырьки являются морфологическим признаком интенсивного обмена веществ. В то же время цитоплазма бедна органеллами общего значения, имеются микрофиламенты, образующие цитоскелет клетки, на цитолемме есть рецепторы. Эндотелиоциты соединяются друг с другом при помощи интердигитаций и зон слипания. Среди эндотелиоцитов имеются фенестрированные, т. е. эндотелиоциты, у которых есть фенестры. Фенестрированные капилляры имеются в гипофизе и клубочках почек. В цитоплазме эндотелиоцитов встречаются щелочная фосфатаза и АТФ-аза. Эндотелиоциты венозного конца капилляра образуют складки в виде клапанов, регулирующих кровоток. БАЗАЛЬНАЯ МЕМБРАНА капилляров имеет толщину около 30 нм, в ней содержится АТФ-аза. ПЕРИЦИТЫ располагаются в расщелинах базальной мембраны, имеют отростчатую форму. В отростках имеются сократительные филаменты. Отростки перицитов охватывают капилляр. Между перицитами и эндотелиоцитами имеются контакты. В том месте, где находится контакт, в базальной мембране есть отверстие.

СЛОЙ АДВЕНТИЦИАЛЬНЫХ КЛЕТОК. Адвентициальные клетки погружены в аморфный матрикс вокруг капилляра, в котором проходят тонкие коллагеновые и эластические волокна.

 

КЛАССИФИКАЦИЯ КАПИЛЛЯРОВ В ЗАВИСИМОСТИ ОТ СТРОЕНИЯ ЭНДОТЕЛИЯ И БАЗАЛЬНОЙ МЕМБРАНЫ.

Различают 3 типа капилляров:

1 тип соматические, характеризуется отсутствием фенестр в эндотелии и отверстий в базальной мембране - это капилляры скелетной мускулатуры, легких, нервных стволов, слизистых оболочек;

2-й тип - фенестрированные, характеризуется наличием фенестр в эндотелии и отсутствием отверстий в базальной мембране - это капилляры клубочков почек и ворсин кишечника;

3-й - перфорированный тип капилляров характеризуется наличием в эндотелии фенестр и базальной мембране отверстий - это синусоидные капилляры печени и органов кроветворения, благодаря их большой ширине, повышенной проницаемости стенки и замедленному току крови в органах кроветворения осуществляется миграция зрелых форменных элементов в просвет синусоидов.

2 Вопрос. Общая морфо-функциональная характеристика волокнистых соедини-тельных тканей. Источник развития. Классификация. Клетки и межклеточное вещество. Их соотношения в различных тканях.

 

Волокнистые соединительные ткани включают рыхлую и плотную волокнистые соединительные ткани. Плотная волокнистая соединительная ткань, в свою очередь, имеет две разновидности — неоформленную и оформленную плотную соединительную ткань.

Рыхлая волокнистая соединительная ткань располагается преимущественно по ходу кровеносных и лимфатических сосудов, нервов, образует строму многих внутренних органов, а также собственную пластинку слизистой оболочки, подслизистую и подсерозную основы, адвентициальную оболочку. Она содержит многочисленные клетки: фибробласты, фиброциты, макрофаги, тучные клетки (тканевые базофилы), адипоциты, пигментные клетки, лимфоциты, плазмоциты, лейкоциты. В межклеточном веществе рыхлой волокнистой соединительной ткани преобладает аморфное вещество, а волокна, как правило, тонкие. Волокон мало, они располагаются в разных направлениях, поэтому такая ткань названа рыхлой.

Плотная волокнистая соединительная ткань благодаря хорошо развитым волокнистым структурам выполняет в основном опорную и защитную функции. В межклеточном веществе преобладают волокна, аморфного вещества мало, количество клеток менее значительное. Соединительнотканные волокна или переплетаются в разных направлениях (неоформленная плотная волокнистая ткань), или располагаются параллельно друг другу (оформленная плотная волокнистая ткань).

Неоформленная плотная волокнистая соединительная ткань формирует футляры для мышц, нервов, капсулы органов и отходящие от них внутрь органов трабекулы. Эта ткань образует склеру глаза, надкостницу и надхрящницу, волокнистый слой суставных капсул, сетчатый слой дермы, клапаны сердца, перикард, твердую мозговую оболочку.

Оформленная плотная волокнистая соединительная ткань образует сухожилия, связки, фасции, межкостные мембраны. Параллельно расположенные коллагеновые волокна представляют собой тонкие пучки 1-го порядка. Между ними находятся так называемые сухожильные клетки с характерными темными ядрами продолговатой формы. Пучки коллагеновых волокон 1-го порядка объединены в более толстые пучки 2-го порядка, которые разделены прослойками волокнистой соединительной ткани. Эти пучки сформированы плотно упакованными в слои коллагеновыми волокнами, которые в соседних слоях перекрещиваются почти под прямым углом. Между слоями залегают уплощенные многоотростчатые фиброциты.

Межклеточное вещество рвст состоит из основного вещества и волокон.

1. Основное вещество - гомогенная, аморфная, гелеобразная, бесструктурная масса из макромолекул полисахаридов, связанных с тканевой жидкостью. Из полисахаридов можно назвать сульфатированные гликозаминогликаны (пример: гепаринсульфат, хондроэтинсульфат; существуют в комплексе с белками, поэтому их называют протеогликанами) и несульфатированные гликозаминогликаны (пример: гиалуроновая кислота). Органическая часть основного вещества синтезируются в фибробластах, фиброцитах. Основное вещество, как каллоидная система, может переходить из состоя- ния гель в состояние золь и наоборот, тем самым играет большое значение в регуляции обмена веществ между кровью и другими тканями.

2. Волокна - второй компонент межклеточного вещества рвст. Различают коллагеновые, эластические и ретикулярные волокна.

1) Коллагеновые волокна под световом микроскопом - более толстые (диа-метр от 3 до130 мкм), имеющие извитой (волнистый) ход, окрашивающиеся кислыми красками (эозином в красный цвет) волокна. Состоят из белка коллагена, синтезирующегося в фибробластах, фиброцитах. Различают 13 типов коллагеновых волокон (в рвст - I тип). Коллагеновые волокна не растягиваются, очень прочны на разрыв (6 кг/мм2). Функция - обеспечивают механическую прочность рвст.

2) Ретикулярные волокна - считаются разновидностью (незрелые) коллагеновыхных волокон, т. е. аналогичны по химическому составу и по ультраструктуре, но в отличие от коллагеновых волокон имеют меньший диаметр и сильно разветвляясь образуют петлистую сеть (отсюда и название: " ретикулярные" - переводится как сетчатые или петлистые). Составляющие компоненты синтезируются в фибробластах, фиброцитах. В рвст встречаются в небольшом количестве вокруг кровеносных сосудов. Выявляются импрегнацией серебром.

3) Эластические волокна - тонкие (d=1-3 мкм), менее прочные (4-6 кг/см2), но зато очень эластичные волокна из белка эластина (синтезируются в фибробластах). Эти волокна исчерченностью не обладают, имеют прямой ход, часто разветвляются. Избирательно хорошо окрашиваются селективным красителем орсеином. Функция: придают рвст эластичность, способность растягиваться.

Регенерация рвст. РВСТ хорошо регенерирует и участвует при восполнении целостности любого поврежденного органа. При значительных повреждениях часто дефект органа восполняется соединительнотканным рубцом. Регенерация рвст происходит за счет стволовых клеток фибробластического дифферона и малодифференцированных клеток (адвентициальные клетки на-пример) способных дифференцироваться в фибробласты. Фибробласты размножаются и начинают вырабатывать органические компоненты межклеточного вещества.

Функции:

1. Трофическая функция: располагаясь вокруг сосудов рвст регулирует обмен веществ между кровью и тканями органа.

2. Защитная функция обусловлена наличием в рвст макрофагов, плазмоцитов и лейкоцитов. Антигены прорвавшиеся через I - эпителиальный барьер ор-ганизма, встречаются со II барьером - клетками неспецифической (макрофаги, нейтрофильные гранулоциты) и иммунологической защиты (лимфоциты, макрофаги, эозинофилы).

3. Опорно-механическая функция.

4. Пластическая функция - участвует в регенерации органов после повреждений.

3 Вопрос. Общий план строения эукариотических клеток. Взаимодействие структур клетки в процессе

Типичная клетка эукариот состоит из трех составных частей – оболочки, цитоплазмы и ядра. Основу клеточной оболочки составляет плазмалемма (клеточная мембрана) и углеводно-белковая поверхностная структура.

1. Плазмалемма.

2. Углеводно-белковая поверхностная структура. Животные клетки имеют небольшую белковую прослойку (гликокаликс). У растений поверхностная структура клетки – клеточная стенка состоит из целлюлозы (клетчатки).

Функции клеточной оболочки: поддерживает форму клетки и придает механическую прочность, защищает клетку, осуществляет узнавание молекулярных сигналов, регулирует обмен веществ между клеткой и средой, осуществляет межклеточное взаимодействие.

Цитоплазма состоит из гиалоплазмы (основное вещество цитоплазмы), органоидов и включений.

1. Гиалоплазма представляет собой коллоидный раствор органических и неорганических соединений, объединяет все структуры клетки в единое целое.

2. Митохондрии имеют две мембраны: наружную гладкую внутреннюю со складками – кристами. Внутри между кристами находится матрикс, содержащий молекулы ДНК, мелкие рибосомы и ферменты дыхания. В митохондриях происходит синтез АТФ. Митохондрии делятся делением надвое.

3. Пластиды характерны для растительных клеток. Различают три вида пластид: хлоропласты, хромопласты и лейкопласты. Делятся делением надвое.

I. Хлоропласты – зеленые пластиды, в которых осуществляется фотосинтез. Хлоропласт имеет двухмембранную оболочку. Тело хлоропласта состоит из бесцветногобелково-липидного стромы, пронизанной системой плоских мешочков (тилакоидов) образованных внутренней мембраной. Тилакоиды образуютграны. В строме содержатся рибосомы, крахмальные зерна, молекулы ДНК.

II. Хромопласты придают разным органам растения окраску.

III. Лейкопласты запасают питательные вещества. Из лейкопластов возможно образование хромопластов и хлоропластов.

4. Эндоплазматическая сеть представляет собой разветвленную систему трубочек, каналов и полостей. Различают негранулярную (гладкую) и гранулярную (шероховатую) ЭПС. На негранулярной ЭПС находятся ферменты жирового и углеводного обмена (происходит синтез жиров и углеводов). Награнулярной ЭПС располагаются рибосомы, осуществляющие биосинтез белка. Функции ЭПС: транспортная, концентрация и выделение.

5. Аппарат Гольджи состоит из плоских мембранных мешочков и пузырьков. В животных клетках аппарат Гольджи выполняет секреторную функцию, в растительных он является центром синтеза полисахаридов.

6. Вакуоли заполнены клеточным соком растений. Функции вакуолей: запасание питательных веществ и воды, поддержаниетургорного давления в клетке.

7. Лизосомы сферической формы, образованы мембраной, внутри которой содержатся ферменты, гидролизующие белки, нуклеиновые кислоты, углеводы, жиры.

8. Клеточный центр управляет процессами деления клеток.

9. Микротрубочкиимикрофиламенты в формируют клеточный скелет.

10. Рибосомы эукариот более крупные (80S).

11. Включения – запасные вещества, ивыделения – только в растительных клетках.

Ядро состоит из ядерной оболочки, кариоплазмы, ядрышек, хроматина.

1. Ядерная оболочка по строению аналогична клеточной мембране, содержит поры. Ядерная оболочка защищает генетический аппарат от воздействия веществ цитоплазмы. Осуществляет контроль за транспортом веществ.

2. Кариоплазма представляет собой коллоидный раствор, содержащий белки, углеводы, соли, другие органические и неорганические вещества.

3. Ядрышко – сферическое образование, содержит различные белки, нуклеопротеиды, липопротеиды, фосфопротеиды. Функция ядрышек – синтез зародышей рибосом.

4. Хроматин(хромосомы). В стационарном состоянии (время между делениями) ДНК равномерно распределены в кариоплазме в виде хроматина. При делении хроматин преобразуется в хромосомы.

Функции ядра: в ядре сосредоточена информация о наследственных признаках организма (информативная функция); хромосомы передают признаки организма от родителей к потомкам (функция наследования); ядро согласует и регулирует процессы в клетке (функция регуляции).

 

Взаимодействие структур клетки на примере синтеза белка. Экспрессия генов, то есть синтез белка на основе генетической информации, осуществляется в несколько этапов. Вначале на матрице ДНКсинтезируетсямРНК. Этот процесс называетсятранскрипцией. Последовательностьпуриновыхипиримидиновых основаниймРНК комплементарна основаниям так называемой некодирующей цепи ДНК: аденинуДНК соответствуетурацилРНК, цитозинуДНК -гуанинРНК, тиминуДНК -аденинРНК игуанинуДНК -цитозинРНК.

В ядре каждая мРНК подвергается существенным изменениям, в частности удаляются интронныепоследовательности (сплайсинг). Затем она выходит через ядерную оболочку в цитоплазму, где используется в качестве матрицы для синтеза белка (трансляции). Для этого мРНК присоединяется крибосоме, которая состоит изрРНКи большого числа белков.

Чтобы занять соответствующее место в молекуле белка, каждая из 20 аминокислот вначале прикрепляется к своей тРНК. Одна из петель каждой тРНК имеет триплет нуклеотидов - антикодон, комплементарный одному из кодонов мРНК.

С участием цитоплазматических факторов (фактора инициации, фактора элонгацииифактора терминации) между аминокислотами, выстраивающимися в цепь согласно последовательности кодонов мРНК, образуются пептидные связи. По достижениитерминирующего кодонасинтез прекращается, и полипептид отделяется от рибосомы.

Процесс биосинтеза поставляет белки не только для роста организма или для секреции в среду. Все белки живых клеток со временем претерпевают распад до составляющих их аминокислот, и для поддержания жизни клетки должны синтезироваться вновь.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...