Способы распространения результатов выборочного наблюдения на генеральную совокупность
На практике используют два способа распространения выборочного наблюдения на генеральную совокупность: 1. способ прямого пересчета применяется тогда, когда с помощью выборки рассчитываются средние объемные показатели. Например, при определении общего количества молока, полученного от коров в личных подсобных хозяйствах. Для этого на основе выборочного обследования бюджетов крестьян устанавливают средний надой на одну корову. По данным переписи скота рассчитывают поголовье коров в личных подсобных хозяйствах. Перемножая эти данные, определяют общий объем молока. 2. способ поправочных коэффициентов применяется для уточнения и проверки данных сплошного наблюдения. Его используют в том случае, когда можно сопоставить данные выборочного и сплошного наблюдения. При этом рассчитывают поправочный коэффициент, по которому проводят корректировку итогов сплошного наблюдения. Например, в результате сплошной переписи скота установлено, что в личных подсобных хозяйствах области имелось 100 000 коров, в т.ч. в районе А 1000 коров. Выборочное обследование этого района показало, что фактическое число коров составило 1015, т.е. при сплошной переписи не были учтены 15 коров. Поправочный коэффициент будет равен: 0,015 (15/1000). Тогда по области с учетом поправочного коэффициента число коров составит: (0,015*100 000): 1000+ 100000 = 1500 + 100000 = 101 500 голов. Выборочное наблюдение широко применяется для: 1. статистического оценивания и проверки гипотез; 2. решения производственных и управленческих задач; 3. отраслевых, социально – экономических исследований; 4. разрешения задач в сфере предпринимательской деятельности. Вопросы для теоретического контроля знаний:
Примеры решения задач: 1. В городе проживает 250тыс. семей. Для определения среднего числа детей в семье была организована 2% - ная случайная бесповторная выборка семей. По ее результат было получено следующее распределение семей по числу детей:
С вероятностью 0,954 найдите пределы, в которых будет находиться среднее число детей в генеральной совокупности. Вначале определим на основе имеющегося распределения семей выборочную среднюю и дисперсию: 7400: 5000 1,5 чел.; 7650: 5000 = 1,53.
Вычислим теперь предельную ошибку выборки (с учетом того, что р = 0,954, t = 2). Т.о., с вероятностью 0,954 можно утверждать, что среднее число детей в семьях города практически не отличается от 1,5, т.е. в среднем на каждые две семьи приходятся три ребенка. Задания для самостоятельной работы: 1. В области, состоящей из 20 районов, приходилось выборочное обследование урожайности на основе отбора серий (районов). Выборочные средние по районам составили соответственно 14,5ц / га; 16; 15,5; 15 и 14ц / га. С вероятностью 0,954 найдите пределы урожайности во всей области. 2. С целью определения средних затрат времени при поездках на работу населением города планируется выборочное наблюдение на основе случайного повторного отбора. Сколько людей должно быть обследовано, чтобы с вероятностью0,954 ошибка выборки не превышала 1 мин при среднем квадратическом отклонении 15 мин? 3. Из партии импортируемой продукции на посту Московской региональной таможни было взято в порядке случайной повторной выборки 20 проб продукта А. В результате проверки установлена средняя влажность продукта А в выборке, которая оказалась равной 6% при среднем квадратическом отклонении 1%. С вероятностью 0,683 определите пределы средней влажности продукта во всей партии импортируемой продукции. Литература: 1.Елисеева И.И., Юзбашев М.М. Общая теория статистики, М.: Финансы и статистика, 1996.- с.132-183. 2.Ефимова М.Р., Петрова Е.В., Румянцев В.Н. Общая теория статистики. М.: Инфра – М, 2000. –с.157-219. 3.Гусаров В.М. Статистика. М.: ЮНИТА – ДАНА, 2001. – с.87-104. 4.Общая теория статистики под ред.Спирина А.А. М.: Финансы и статистика, 1996.- с.124-139. 5.Статистика: курс лекций под ред. Ионина В.Г. Изд – во НГАЭИУ, М.: Инфра – М, 1997. – с. 18-28. 6. Теория статистики под ред. Шмойловой Р.А. М.: Финансы и статистика, 2002. – с.223 – 265.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|