Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Решение задач в смешанных стратегиях (частный случай)




Решить игру - означает найти цену игры и оптимальные стратегии. Рассмотрение методов нахождения оптимальных сме­шанных стратегий для матричных игр начнем с простейшей игры, описываемой матрицей 2х2. Игры с седловой точкой специально рассматриваться не будут. Если получена седловая точка, то это означает, что имеются невыгодные стратегии, от которых следу­ет отказываться. При отсутствии седловой точки можно полу­чить две оптимальные смешанные стратегии. Как уже отмеча­лось, эти смешанные стратегии записываются так:

Значит, имеется платежная матрица

При этом

откуда получаем оптимальные значения и :

Зная и находим g:

Вычислив g, находим и :

Задача решена, так как найдены векторы

и цена игры g. Имея матрицу платежей А, можно решить задачу графически. При этом методе алгоритм решения весьма прост (рис. 2.1):

1. По оси абсцисс откладывается отрезок единичной длины.

2. По оси ординат откладываются выигрыши при стратегии А 1.

3. На линии, параллельной оси ординат, в точке 1 отклады­ваются выигрыши при стратегии А 2.

4. Концы отрезков обозначаются для a11b11, a12 – b21, a22b22, a21 – b12 и проводятся две прямые линии b11 b12 и b21 b22.

5. Определяется ордината точки пересечения с. Она равна g. Абсцисса точки с равна р21 = 1 – р2).

Рис. 2.1. Оптимальная смешанная стратегия

Данный метод имеет достаточно широкую область приложе­ния. Это основано на общем свойстве игр т´п, состоящем в том, что в любой игре т´п каждый игрок имеет оптимальную сме­шанную стратегию, в которой число чистых стратегий не боль­ше, чем min(m,n). Из этого свойства можно получить известное следствие: в любой игре 2´п и т´2 каждая оптимальная страте­гия и содержит не более двух активных стратегий. Значит, любая игра 2 ´n и т´2 может быть сведена к игре 2 ´ 2. Следовательно, игры 2 ´т и т´2 можно решить графическим методом.

Если матрица конечной игры имеет размерность т´п, где т>2 и п>2, то для определения оптимальных смешанных стратегий, как будет показано в приложении, используется линейное програм­мирование.

Рассмотрим некоторые практические задачи, в которых ис­пользуются критерии игр для оценки наиболее эффективного поведения оперирующей стороны.

Задача 2.1. Выбрать оптимальный режим работы новой систе­мы ЭВМ, состоящей из двух ЭВМ типов А1 и А2. Известны выигрыши от внедрения каждого типа ЭВМ в зависимости от внешних условий, если сравнить со старой системой.

При использовании ЭВМ.типов А1 и А2 в зависимости от характера решаемых задач В1 и В2 (долговременные и краткос­рочные) будет разный эффект. Предполагается, что максималь­ный выигрыш соответствует наибольшему значению критерия эффекта от замены вычислительной техники старого поколения на ЭВМ А1 и А2.

Итак, дана матрица игры (табл. 2.4), где А1, А2 - стратегии руководителя; В1, В2 - стратегии, отражающие характер решае­мых на ЭВМ задач.

Таблица 2.4

Требуется найти оптимальную смешанную стратегию руково­дителя и гарантированный средний результат g, т.е. определить, какую долю времени должны использоваться ЭВМ типов А1 и А2.

Решение. Запишем условия в принятых индексах:

а11 = 0,3; а12 = 0,8; а21 = 0,7; а22 = 0,4.

Определим нижнюю и верхнюю цены игры:

a1 = 0,3; a2 = 0,4; a = 0,4;

b1 = 0,7; b2 = 0,8; b = 0,7.

Получаем игру без седловой точки, так как

Максиминная стратегия руководителя вычислительного цен­тра – А2.

Для этой стратегии гарантированный выигрыш равен a = 0,4 (40 %) по сравнению со старой системой.

Решение для определения g, р1 и р2 проведем графически (рис. 2.2).

Рис. 2.2. Графическая интерпретация алгоритма решения

Алгоритм решения:

1. По оси абсцисс отложим отрезок единичной длины.

2. По оси ординат отложим выигрыши при стратегии А1.

3. На вертикали в точке 1 отложим выигрыши при стратегии А2.

4. Проводим прямую b11 b12, соединяющую точки а11,a21.

5. Проводим прямую b21b22, соединяющую точки а12, а22.

6. Определяем ординату точки пересечения с линий b11b12 и b 21 b 22. Она равна g.

7. Определим абсциссу точки пересечения с. Она равна р2, а р1=1–р2

Выпишем решение и представим оптимальную стратегию игры:

Вывод. При установке новой системы ЭВМ, если неизвес­тны условия решения задач заказчика, на работу ЭВМ А1 долж­но приходиться 37,5 % времени, а на работу ЭВМ А2 - 62,5 %. При этом выигрыш составит 55 % по сравнению с предыдущей системой ЭВМ.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...