Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Анализ и решение задач с помощью дерева решений




Процесс принятия решений с помощью дерева решений в общем случае предполагает выполнение следующих пяти этапов.

Этап 1. Формулирование задачи. Прежде всего необходимо отбросить не относящиеся к проблеме факторы, а среди множе­ства оставшихся выделить существенные и несущественные. Это позволит привести описание задачи принятия решения к подда­ющейся анализу форме. Должны быть выполнены следующие основные процедуры: определение возможностей сбора информаций для экспериментирования и реальных действии; состав­ление перечня событии, которые с определенной вероятностью могут произойти; установление временного порядка расположе­ния событий, в исходах которых содержится полезная и доступ­ная информация, и тех последовательных действий, которые можно предпринять.

Этап 2. Построение дерева решений.

Этап 3. Оценка вероятностей состояний среды, т.е. сопо­ставление шансов возникновения каждого конкретного события. Следует отметить, что указанные вероятности определяются либо на основании имеющейся статистики, либо экспертным путем.

Этап 4. Установление выигрышей (или проигрышей, как выигрышей со знаком минус) для каждой возможной комбина­ции альтернатив (действий) и состояний среды.

Этап 5. Решение задачи.

Прежде чем продемонстрировать процедуру применения де­рева решений, введем ряд определений. В зависимости от отно­шения к риску решение задачи может выполняться с позиций так называемых «объективистов» и «субъективистов». Поясним эти понятия на следующем примере. Пусть предлагается лотерея: за 10 дол. (стоимость лотерейного билета) игрок с равной вероятно­стью р = 0,5 может ничего не выиграть или выиграть 100 дол. Один индивид пожалеет и 10 дол. за право участия в такой лоте­рее, т.е. просто не купит лотерейный билет, другой готов запла­тить за лотерейный билет 50 дол., а третий заплатит даже 60 дол. за возможность получить 100 дол. (например, когда ситуация скла­дывается так, что, только имея 100 дол., игрок может достичь своей цели, поэтому возможная потеря последних денежных средств, а у него их ровно 60 дол., не меняет для него ситуации).

Безусловным денежным эквивалентом (БДЭ) игры называет­ся максимальная сумма денег, которую ЛПР готов заплатить за участие в игре (лотерее), или, что то же, та минимальная сумма денег, за которую он готов отказаться от игры. Каждый индивид имеет свой БДЭ.

Индивида, для которого БДЭ совпадает с ожидаемой денеж­ной оценкой (ОДО) игры, т.е. со средним выигрышем в игре (лотерее), условно называют объективистом, индивида, для ко­торого БДЭ ^ ОДО, - субъективистом. Ожидаемая денежная оцен­ка рассчитывается как сумма произведений размеров выигрышей на вероятности этих выигрышей. Например, для нашей лотереи ОДО = 0,5*0 + 0,5*100 = 50 дол. Если субъективист склонен к риску, то его БДЭ > ОДО. Если не склонен, то БДЭ < ОДО. Воп­рос об отношении к риску более строго рассматривается в гл. 4i

Предположим, что решения принимаются с позиции объек­тивиста.

Рассмотрим процедуру принятия решения на примере следу­ющей задачи.

Задача 3.4. Руководство некоторой компании решает, созда­вать ли для выпуска новой продукции крупное производство, малое предприятие или продать патент другой фирме. Размер выигрыша, который компания может получить, зависит от благо­приятного или неблагоприятного состояния рынка (табл. 3.1).

На основе данной таблицы выигрышей (потерь) можно пост­роить дерево решений (рис. 3.1).

Рис. 3.1. Дерево решений без дополнительного обследования конъюнктуры рынка: ÿ - решение (решение принимает игрок): [*] - случай (решение "принимает" случай); // - отвергнутое решение

Таблица 3.1

Номер стратегии Действия компании Выигрыш, дол., при состоянии экономической среды*
благоприятном неблаго­приятном
  Строительство круп­ного предприятия (а1) 200 000 -180 000
  Строительство малого предприятия (a2) 100 000 -20 000
  Продажа патента (a3) 10 000 -10 000

 

• Вероятность благоприятного и неблагоприятного состояний экономичес­кой среды равна 0,5.

 

Процедура принятия решения заключается в вычислении для каждой вершины дерева (при движении справа налево) ожидае­мых денежных оценок, отбрасывании неперспективных ветвей и выборе ветвей, которым соответствует максимальное значение ОДО.

Определим средний ожидаемый выигрыш (ОДО):

• для вершины 1 ОДО1 = 0,5*200 000 + 0,5(-180 000) = 10 000 дол.;

• для вершины 2 ОДО2 = 0,5*100 000 + 0,5(-20 000) = 40 000 дол.;

• для вершины 3 ОДО3 = 10 000 дол.

Вывод. Наиболее целесообразно выбрать стратегию а2, т.е. строить малое предприятие, а ветви (стратегии) а1 и а3 дерева решений можно отбросить. ОДО наилучшего решения равна 40 000 дол. Следует отметить, что наличие состояния с вероят­ностями 50 % неудачи и 50 % удачи на практике часто означает, что истинные вероятности игроку скорее всего неизвестны и он всего лишь принимает такую гипотезу (так называемое предпо­ложение «fifty - fifty» - пятьдесят на пятьдесят).

Усложним рассмотренную выше задачу.

Пусть перед тем, как принимать решение о строительстве, руководство компании должно определить, заказывать ли допол­нительное исследование состояния рынка или нет, причем пре­доставляемая услуга обойдется компании в 10 000 дол. Руковод­ство понимает, что дополнительное исследование по-прежнему не способно дать точной информации, но оно поможет уточнить ожидаемые оценки конъюнктуры рынка, изменив тем самым значения вероятностей.

Относительно фирмы, которой можно заказать прогноз, изве­стно, что она способна уточнить значения вероятностей благо­приятного или неблагоприятного исхода. Возможности фирмы в виде условных вероятностей благоприятности и неблагоприят­ности рынка сбыта представлены в табл. 3.2. Например, когда фирма утверждает, что рынок благоприятный, то с вероятностью 0,78 этот прогноз оправдывается (с вероятностью 0,22 могут возникнуть неблагоприятные условия), прогноз о неблагоприят­ности рынка оправдывается с вероятностью 0,73.

Таблица 3.2

Прогноз фирмы Фактически
Благоприятный Неблагоприятный
Благоприятный 0,78 0,22
Неблагоприятный 0,27 0,73

 

Предположим, что фирма, которой заказали прогноз состоя­ния рынка, утверждает:

• ситуация будет благоприятной с вероятностью 0,45;

• ситуация будет неблагоприятной с вероятностью 0,55.

На основании дополнительных сведений можно построить новое дерево решений (рис. 3.2), где развитие событий происхо­дит от корня дерева к исходам, а расчет прибыли выполняется от конечных состояний к начальным.

Рис. 3.2. Дерево решений при дополнительном обследовании рынка (см. условные обозначения к рис. 3.1)

Анализируя дерево решений, можно сделать следующие выводы:

• необходимо проводить дополнительное исследование конъ­юнктуры рынка, поскольку это позволяет существенно уточнить принимаемое решение;

• если фирма прогнозирует благоприятную ситуацию на рынке, то целесообразно строить большое предприятие (ожида­емая максимальная прибыль 116 400 дол.), если прогноз не­благоприятный - малое (ожидаемая максимальная прибыль 12 400 дол.).

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...