Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

ОЖИДАЕМАЯ ЦЕННОСТЬ ТОЧНОЙ ИНФОРМАЦИИ




Предположим, что консультационная фирма за определенную плату готова предоставить информацию о фактической ситуации на рынке в тот момент, когда руководству компании надлежит принять решение о масштабе производства. Принятие предложе­ния зависит от соотношения между ожидаемой ценностью (ре­зультативностью) точной информации и величиной запрошенной платы за дополнительную (истинную) информацию, благодаря которой может быть откорректировано принятие решения, т.е. первоначальное действие может быть изменено.

Ожидаемая ценность точной информации о фактическом состоянии рынка равна разности между ожидаемой денежной оценкой при наличии точной информации и максимальной ожидаемой денежной оценкой при отсутствии точной инфор­мации.

Рассчитаем ожидаемую ценность точной информации для примера, в котором дополнительное обследование конъюнктуры рынка не проводится. При отсутствии точной информации, как уже было показано выше, максимальная ожидаемая денежная оценка равна:

ОДО = 0,5 * 100 000 - 0,5 * 20 000 = 40 000 дол.

Если точная информация об истинном состоянии рынка бу­дет благоприятной (ОДО =200 000 дол., см. табл. 3.1), принима­ется решение строить крупное производство; если неблагоприятной, то наиболее целесообразное решение - продажа патента (ОДО=10 000 дол.). Учитывая, что вероятности благоприятной и неблагоприятной ситуаций равны 0,5, значение ОДОт.и (ОДО точной информации) определяется выражением:

ОДОт.и = 0,5 * 200 000 + 0,5 * 10 000 = 105 000 дол.

Тогда ожидаемая ценность точной информации равна:

ОЦт.и = ОДОт.и - ОДО = 105 000 - 40 000 = 65 000 дол.

Значение ОЦт.и показывает, какую максимальную цену должна быть готова заплатить компания за точную информацию об ис­тинном состоянии рынка в тот момент, когда ей это необходимо.

ЗАДАЧИ С РЕШЕНИЯМИ

Задача 3.5. Компания «Российский сыр» - небольшой произ­водитель различных продуктов из сыра на экспорт. Один из продуктов - сырная паста - поставляется в страны ближнего зарубежья. Генеральный директор должен решить, сколько ящи­ков сырной пасты следует производить в течение месяца. Веро­ятности того, что спрос на сырную пасту в течение месяца будет 6, 7, 8 или 9 ящиков, равны соответственно 0,1; 0,3; 0,5; 0,1.

Затраты на производство одного ящика равны 45 дол. Компа­ния продает каждый ящик по цене 95 дол. Если ящик с сырной пастой не продается в течение месяца, то она портится и компа­ния не получает дохода. Сколько ящиков следует производить в течение месяца?

Решение. Пользуясь исходными данными, строим матри­цу игры. Стратегиями игрока 1 (компания «Российский сыр») являются различные показатели числа ящиков с сырной пас­той, которые ему, возможно, следует производить. Состояниями природы выступают величины спроса на аналогичное число ящиков.

Вычислим, например, показатель прибыли, которую получит производитель, если он произведет 8 ящиков, а спрос будет толь­ко на 7.

Каждый ящик продается по 95 дол. Компания продала 7, а произвела 8 ящиков. Следовательно, выручка будет 7*95, а из­держки производства 8 ящиков 8*45. Итого прибыль от указан­ного сочетания спроса и предложения будет равна: 7*95 - 8*45 = 305 дол. Аналогично производятся расчеты при других соче­таниях спроса и предложения.

В итоге получим следующую платежную матрицу в игре с природой (табл. 3.3). Как видим, наибольшая средняя ожидаемая прибыль равна 352,5 дол. Она отвечает производству 8 ящиков.

Таблица 3.3

 

* В скобках приведена вероятность спроса на ящики.

 

На практике чаще всего в подобных случаях решения принима­ются исходя из критерия максимизации средней ожидаемой прибы­ли или минимизации ожидаемых издержек. Следуя такому подходу, можно остановиться на рекомендации производить 8 ящиков, и для большинства ЛПР рекомендация была бы обоснованной. Именно так поступаем мы, когда в гл. 6 - 8 рассматриваем различные при­кладные задачи принятия решений в играх с природой.

Однако, привлекая дополнительную информацию в форме расчета среднего квадратичного отклонения как индекса риска, мы можем уточнить принятое на основе максимума прибыли или минимума издержек решение. Это в полной мере согласуется с характеристиками вариантов, представленных на рис. 1.1. Допол­нительные рекомендации могут оказаться неоднозначными, за­висимыми от склонности к риску ЛПР.

Вспомним необходимые для наших исследований формулы теории вероятностей [2, с. 109, 119]:

дисперсия случайной величины x, равна

Dx = M(x2) – (Mx)2;

среднее квадратичное отклонение

где D и М - соответственно символы дисперсии и математического ожидания.

Проводя соответствующие вычисления для случаев производ­ства 6, 7, 8 и 9 ящиков, получаем:

6 ящиков

 

7 ящиков

8 ящиков

9 ящиков

Вывод. Из представленных результатов расчетов с учетом полученных показателей рисков - средних квадратичных отклоне­нии - очевидно, что производить 9 ящиков при любых обстоятель­ствах нецелесообразно, ибо средняя ожидаемая прибыль, равная 317, меньше, чем для 8 ящиков (352,5), а среднее квадратичное откло­нение (76) для 9 ящиков больше аналогичного показателя для 8 ящиков (63,73). А вот целесообразно ли производство 8 ящиков по сравнению с 7 или 6 - неочевидно, так как риск при производстве 8 ящиков (sx = 63,73) больше, чем при производстве 7 ящиков (sx = 28,5) и тем более 6 ящиков, где sx = 0. Вся информация с учетом ожидаемых прибылей и рисков налицо. Решение должен принимать генеральный директор компании «Российский сыр» с учетом его опыта, склонности к риску и степени достоверности показателей вероятностей спроса: 0,1; 0,3; 0,5; 0,1. Авторы, учиты­вая все приведенные числовые характеристики случайной величи­ны - прибыли, склоняются к рекомендации производить 7 ящиков (не 8, что вытекает из максимизации прибыли без учета риска!). Читателю предлагается обосновать свой выбор.

Задача 3.6. Рассмотрим упомянутую выше проблему закупки угля для обогрева дома. Имеются следующие данные о количестве и ценах угля, необходимого зимой для отопления дома (табл. 3.4). Вероятности зим: мягкой - 0,35; обычной - 0,5; холодной - 0,15.

Таблица 3.4

Зима Количество угля, т Средняя цена за 1 т в ф. ст.
Мягкая
Обычная 7,5
Холодная

 

Эти цены относятся к покупкам угля зимой. Летом цена угля 6 ф. ст. за 1 т, у вас есть место для хранения запаса угля до 6 т, заготавливаемого летом. Если потребуется зимой докупить недо­стающее количество угля, докупка будет по зимним ценам. Пред­полагается, что весь уголь, который сохранится до конца зимы, в лето пропадет.* Сколько угля летом покупать на зиму?

* Предположение делается для упрощения постановки и решения задачи.

 

Решение. Построим платежную матрицу (табл. 3.5).

Таблица 3.5

 

Произведем расчет ожидаемой средней платы за уголь (табл. 3.6).

Таблица 3.6

Зима Средняя ожидаемая плата
Мягкая -(24*0,35+31,5*0,5+40*0,15)= -30,15
Обычная -(30*0,35+30*0,5+38*0,15)= -31,2
Холодная -(36*0,35+36*0,5+36*0,15)= -36

 

Как видим из табл. 3.6, наименьшая ожидаемая средняя пла­та приходится на случай мягкой зимы (30,15 ф. ст.). Соответ­ственно если не учитывать степени риска, то представляется целесообразным летом закупить 4 т угля, а зимой, если потребу­ется, докупить уголь по более высоким зимним ценам.

Если продолжить исследование процесса принятия решения и аналогично задаче 3.5 вычислить средние квадратичные откло­нения платы за уголь для мягкой, обычной и холодной зимы, то соответственно получим:

для мягкой зимыsx = 5,357;

• для обычной зимы sx = 2,856;

• для холодной зимы sx = 0.

Минимальный риск, естественно, будет для холодной зимы, однако при этом ожидаемая средняя плата за уголь оказывается максимальной - 36 ф. ст.

Вывод. Мы склоняемся к варианту покупки угля для обыч­ной зимы, так как согласно табл. 3.6 ожидаемая средняя плата за уголь по сравнению с вариантом для мягкой зимы возрастает на 3,5 %, а степень риска при этом оказывается почти в 2 раза меньшей (sx = 2,856 против 5,357).

Отношение среднего квадратичного отклонения к математи­ческому ожиданию (средний риск на затрачиваемый 1 ф. ст.) для обычной зимы составляет = 0,0915 против аналогичного показателя для мягкой зимы, равного = 0,1777, т.е. вновь различие почти в 2 раза.

Эти соотношения и позволяют нам рекомендовать покупку угля, ориентируясь не на мягкую, а на обычную зиму.

Задача 3.7. АО «Фото и цвет» - небольшой производитель химических реактивов и оборудования, которые используются не­которыми фотостудиями при изготовлении 35-мм фильмов. Один из продуктов, который предлагает «Фото и цвет», - ВС-6. Пре­зидент АО продает в течение недели 11, 12 или 13 ящиков ВС-6. От продажи каждого ящика АО получает 35 дол. прибыли. Как и многие фотографические реактивы, ВС-6 имеет очень малый срок годности. Поэтому, если ящик не продан к концу недели, он должен быть уничтожен. Каждый ящик обходится предприятию в 56 дол. Вероятности продать 11, 12 и 13 ящиков в течение недели равны соответственно 0,45; 0,35; 0,2. Как вы советуете поступить? Как вы порекомендуете поступить, если бы «Фото и цвет» мог сделать ВС-6 с добавкой, значительно про­длевающей срок его годности?

Решение. Матрицу игры с природой (здесь АО «Фото и цвет» - игрок с природой, а природа - торговая конъюнкту­ра) строим по аналогии с рассмотренными выше задачами (табл. 3.7).

Таблица 3.7

* В скобках приведены вероятности спроса на ящики.

 

Расчет средней ожидаемой прибыли производится с исполь­зованием вероятностей состояний природы, как и в задачах 3.5 и 3.6.

Вывод. Наибольшая из средних ожидаемых прибылей (385 дол.) отвечает при заданных возможностях спроса произ­водству 11 ящиков ВС-6.

Производство 11 ящиков в неделю и следует рекомендовать АО «Фото и цвет», ибо показатель риска - среднее квадратичное отклонение, как нетрудно убедиться, sx = 0 - минимален при максимальной средней ожидаемой прибыли.

Если срок службы химического реактива будет удлинен, то его производство даже при прежнем спросе можно увеличить, частично поставляя на склад для последующей реализации.





Рекомендуемые страницы:

Воспользуйтесь поиском по сайту:



©2015- 2021 megalektsii.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.