Задачи для самостоятельного решения.
Задача 2.2. Найдите седловые точки следующих платежных матриц: Задача 2.3. Найдите для платежной матрицы: Задача 2.4. Решите аналитически и графически, используя понятие доминирования, игры, определяемые следующими платежными матрицами: Задача 2.5. Постройте платежную матрицу двухпальцевой игры Морра, которая заключается в следующем. В игру играют два человека: каждый из них показывает один или два пальца и одновременно называет число пальцев, которое, по его мнению, покажет его противник (естественно, противник этого не видит). Если один из игроков угадывает правильно, он выигрывает сумму, равную сумме пальцев, показанных им и его противником. В противном случае - ничья (выигрыш равен нулю). Найдите нижнюю и верхнюю цены игры. Задача 2.6. Используя понятие доминирования, уменьшите размеры следующей платежной матрицы: Для задач 2.7-2.12 постройте платежную матрицу игры и сформулируйте соответствующую модель линейного программирования. Задача 2.7. Пусть сторона А засылает подводную лодку в один из п районов. Сторона В, располагая т противолодочными кораблями, желает обнаружить лодку противника. Вероятность обнаружения лодки в j -м районе (j = 1 ,...,п) равна pj. Предполагается, что обнаружение подлодки каждым кораблем является независимым событием. Сторона В может посылать в различные регионы разное количество кораблей (распределение т кораблей по регионам и есть стратегии стороны В). Сторона В стремится максимизировать вероятность обнаружения подлодки. Сторона А желает противоположного. Вероятность обнаружения лодки в районе j, в котором находится rij кораблей (i - номер стратегии), равна: причем . Найдите оптимальное распределение противолодочных кораблей по регионам.
Рассмотреть частный случай: m = 2, п = 2, р1 = 0,6, р2 = 0,4. Задача 2.8. Каждому из игроков выдается по бубновому и трефовому тузу. Игрок 1 получает также бубновую двойку, а игрок 2 - трефовую. При первом ходе игрок 1 выбирает и откладывает одну из своих карт, а игрок 2, не зная карты, выбранной игроком 1, также откладывает одну из своих карт. Если были отложены карты одной масти, то выигрывает игрок 1, в противном случае выигравшим считается игрок 2. Если отложены две двойки, выигрыш равен нулю. Размер выигрыша определяется картой, отложенной победителем (тузу приписывается одно очко, двойке - два). Задача 2.9. Фирма изготавливает железобетонные панели, используя в качестве основного сырья цемент. В связи с неопределенным спросом на изделия потребность в сырье в течение месяца также не определена. Цемент поставляется в мешках, причем известно, что потребность может составлять D1,D2,...,Dn мешков. Резервы сырья на складе могут составлять R1,R2,...,Rn мешков в месяц. Учитывая, что удельные затраты на хранение сырья равны с 1 а удельные издержки дефицитности сырья (потери, связанные с отсутствием необходимого количества цемента на складе) равны с 2, определить оптимальную стратегию управления запасами цемента на складе. Рассмотреть частный случаи: п = 5, c1 = 5, c2 = 3; D = (1 500, 2 000, 2 500, 3 500, 4 000), R = (1 500, 2 000, 2 500, 3 500, 4 000). Задача 2.10. Игрок 2 прячет некоторый ценный предмет в одном из п мест, а игрок 1 этот предмет ищет. Если он его находит, то получает сумму аi где i = 1,2,..., п, в противном случае - не получает ничего. Задача 2.11. Два игрока независимо друг от друга называют по одному числу из диапазона 1 - 5. Если сумма чисел нечетная, то игрок 2 платит игроку 1 сумму, равную максимальному из чисел; если четная, то платит игрок 1. Задача 2.12. Два игрока имеют по п рублей и предмет ценой с > 0. Каждый игрок делает заявку в запечатанном конверте, предлагая i руб. (где i - одно из целых чисел от 0 до п) за предмет. Записавший большее число получает предмет и платит другому предложенную им сумму. Если оба игрока заявляют одинаковую сумму, то предмет назначается без компенсирующего одностороннего платежа одному из игроков путем бросания монеты, так что ожидаемая доля каждого в предмете составляет в этом случае половину с. Постройте платежную матрицу игры и определите, имеет ли игра седловую точку.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|