Построение эпюр крутящих моментов
Зная величины внешних скручивающих моментов и используя метод сечений, мы можем определить крутящие моменты, возникающие в поперечных сечениях вала. Крутящий момент М к в сечении вала числено равен алгебраической сумме внешних скручивающих моментов, действующих по одну сторону от сечения, при этом могут рассматриваться как левая, так и правая отсеченные части вала. Примем правило знаков для крутящего момента: его положительное направление соответствует повороту сечения по ходу часовой стрелки, если смотреть на сечение со стороны внешней нормали (рис. 5.2). Рис.5.2
При наличии распределенной моментной нагрузки m (рис.5.3) крутящие моменты МК связаны дифференциальной зависимостью (5.1) из которой вытекает следующая формула: (5.2) где – крутящий момент в начале участка. Согласно формуле (5.2) на участках с равномерно распределенной нагрузкой m крутящий момент изменяется по линейному закону. При отсутствии погонной нагрузки (m = 0) крутящий момент сохраняет постоянное значение (МК = МКо = const). В сечениях, где к валу приложены сосредоточенные скручивающие моменты, на эпюре МК возникают скачки, направленные вверх, если моменты направлены против часовой стрелки, либо вниз – при обратном направлении моментов. Рис. 5.3
Пример 1. Построить эпюру крутящих моментов для жестко защемленного стержня (рис.5.4, а).
Рис.5.4
Решение. Следует отметить, что алгоритм и принципы построения эпюры крутящих моментов полностью совпадают с алгоритмом и принципами построения эпюры продольных сил. 1. Намечаем характерные сечения. 2. Определяем крутящий момент в каждом характерном сечении. 3. По найденным значениям строим эпюру (рис.5.4, б).
Напряжения в поперечном сечении Опыты показывают, что если на поверхности бруса круглого сечения нанести прямоугольную сетку, а на торцевой поверхности нанести радиальные линии (рис.5.5), то после деформации кручение окажется что: - все образующие поворачиваются на один и тот же угол , а прямоугольники, нанесенные на поверхности, превращаются в параллелограммы; - торцевые сечения остаются круглыми, плоскими, расстояния между ними не меняются; - каждое сечение поворачивается относительно другого на некоторый угол , называемый углом закручивания; - радиальные линии на торцевой поверхности остаются прямыми. На основании этих наблюдений можно заключить, что может быть принята гипотеза Бернулли (гипотеза плоских сечений), а в вале возникают условия чистого сдвига, в поперечных сечениях действуют только касательные напряжения, нормальные напряжения равны нулю. Рассмотрим поперечное сечение вала, расположенное на некотором расстоянии z от торцевого, где Мк=T (рис.5.5). На элементарной площадке dF будет действовать элементарная сила , момент который относительно оси вала равен . Крутящий момент М к, в сечении равен . (5.3) Рис.5.5
Для того чтобы проинтегрировать это выражение необходимо знать закон распределения напряжений в сечении. Выделим из вала элементарное кольцо длиной dz и толщиной (рис.5.6). Правый торец элемента повернется относительно левого на угол , образующая СВ повернется на угол и займет положение СВ 1. Угол - относительный сдвиг. Из треугольника ОВВ 1 найдем: Рис.5.6 Рис.5.7
. Из треугольника СВВ 1: . Откуда, приравнивая правые части, получим . На основании закона Гука при сдвиге: . (5.4) Подставим выражение (5.2) в (5.1): . Откуда . (5.5) Подставим значение в выражение (5.4) получим: . Таким образом, касательные напряжения при кручении прямо пропорциональны расстоянию от центра тяжести сечения до рассматриваемой точки и одинаковы в точках, одинаково удаленных от центра тяжести сечения (рис. 5.7). При получим . Наибольшие напряжения возникают в точках контура сечения при :
. Величина отношения полярного момента инерции к радиусу вала называется моментом сопротивления сечения при кручении или полярным моментом сопротивления . Для сплошного круглого сечения . Для кольцевого сечения , где .
Тогда максимальные касательные напряжения равны .
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|