Основные дифференциальные соотношения теории изгиба
Пусть брус нагружен произвольным образом распределенной нагрузкой (рис. 6.12, а). Рис. 6.12
Выделим из бруса элемент длиной и приложим по его краям положительные внутренние усилия (рис. 6.12, б). В пределах малого отрезка нагрузку можно считать распределенной равномерно. Приравняем нулю сумму проекций всех сил на вертикальную ось y и сумму моментов всех сил относительно поперечной оси x, проходящей через точку С (рис. 6.12, б), получим: ; . Производя упрощения и отбрасывая величины высшего порядка малости, получим теорему Журавского (теорему Шведлера):
откуда Указанные дифференциальные зависимости при изгибе позволяют установить некоторые особенности эпюр поперечных сил и изгибающих моментов. 1. Эпюра Q является прямолинейной на всех участках. На тех участках, где нет распределенной нагрузки, эпюра Q ограничена прямыми, параллельными оси эпюры, а эпюра М, в общем случае, – наклонными прямыми (рис. 6.13). 2. На тех участках, где к балке приложена равномерно распределенная нагрузка, эпюра Q ограничена наклонными прямыми, а эпюра М – квадратичными параболами (рис. 6.14). При построении эпюры М на сжатых волокнах, выпуклость параболы обращена в сторону, противоположную действию распределенной нагрузки (рис. 6.15, а, б). Рис.6.13
Рис.6.14
3. В тех сечениях, где Q = 0, касательная к эпюре М параллельна оси эпюры (рис. 6.14, 6.15). Изгибающий момент в таких сечениях балки экстремален по величине (М max, M min). 4. На участках, где Q >0, M возрастает, то есть слева на право положительные ординаты эпюры M монотонно увеличиваются, отрицательные – монотонно уменьшаются (рис. 6.13, 6.14); на тех участках, где Q < 0, M убывает (рис. 6.13, 6.14). 5. В тех сечениях, где к балке приложены сосредоточенные силы:
а) на эпюре Q будут скачки на величину и в направлении приложенных сил (рис. 6.13, 6.14). б) на эпюре M будут переломы (рис. 6.13, 6.14), острие перелома направлено против действия силы. 6. В тех, сечениях, где к балке приложены сосредоточенные моменты, на эпюре M будут скачки на величину этих моментов, на эпюре Q никаких изменений не будет (рис. 6.16).
Рис.6.15
Рис.6.16
7. Если на конце консоли или в концевой опоре приложен сосредоточенный момент, то в этом сечении изгибающий момент равен внешнему моменту (сечения C и B на рис. 6.16). 8. Эпюра Q представляет собой диаграмму производной от эпюры M. Значит, ординаты Q пропорциональны тангенсу угла наклона касательной к эпюре M (рис. 6.14). 9. Порядок линии на эпюре Q всегда на единицу меньше, чем на эпюре M. Например, если эпюра M - квадратная парабола, то эпюра Q на этом участке - наклонная прямая; если эпюра M - наклонная прямая, то эпюра Q на этом участке - прямая, параллельная оси; если M =const (прямая, параллельная оси), то на этом участке Q =0. Примеры построения эпюр внутренних силовых факторов для консольных балок При построении эпюр и в консольных, или жестко защемленных, балках нет необходимости вычислять опорные реакции, возникающие в жесткой заделке, но выбирать отсеченную часть нужно так, чтобы заделка в нее не попадала. Пример 1. Рассмотрим балку длиной l защемленную одним концом и находящуюся под действием сосредоточенной силы Р (рис.6.17). Пусть для определенности Р= 4 кН, l = 2 м. Рис.6.17
Определим внутренние силовые факторы, возникающие в балке. Воспользуемся методом сечением. Рассечем балку поперечным сечением в произвольном месте. Отбросим правую часть. Заменим ее действие внутренними усилиями N - вдоль оси z, - вдоль оси y и моментом – в плоскости осей yz вокруг оси х. На рис.6.17 в соответствии с принятым правилом знаков показаны положительные направления внутренних силовых факторов.
Уравновесим отсеченную часть. Запишем уравнения статического равновесия, получим , , , , , , , . Из первого уравнения видно, что нормальная сила N при изгибе равна нулю, далее не будем ее определять. Построим эпюры поперечной силы Qy и изгибающего момента Mx вдоль длины балки. Поперечная сила постоянна по всей длине балки и равна Qy = P = 4 кН. Отложим на графике линию параллельную оси z. Изгибающий момент Мх изменяется в зависимости от расстояния z. Вычислим его значение в двух точках: в начале z = 0 и в конце балки z = l = 2 м. z = 0 (Мх = 0); z = 2 м (Мх = 8 кНм). Построим по точкам график Мх. Построение эпюр поперечной силы Qy и изгибающего момента Mx является одним из основных этапов при расчете конструкций на изгиб. По эпюрам Qy и Mx определяется опасное сечение, т.е. сечение в котором может произойти разрушение. Опасным сечением называется сечение, в котором изгибающий момент достигает наибольшего по модулю значения. . В некоторых случаях опасным сечением может быть также сечение, где наибольшего значения достигает поперечная сила . В данном случае опасным является место закрепления балки. Пример 2. Построить эпюры и (рис.6.18). Рис. 6.18 Порядок расчета. 1. Намечаем характерные сечения. 2. Определяем поперечную силу в каждом характерном сечении. По вычисленным значениям строим эпюру . 3. Определяем изгибающий момент в каждом характерном сечении. По вычисленным значениям строим эпюру , причем, на участке под распределенной нагрузкой эпюра будет криволинейной (квадратная парабола). Выпуклость кривой на этом участке всегда обращена навстречу распределенной нагрузке. Пример 3. Построить эпюры , (рис.6.19). В данном случае для правильного построения эпюры необходимо использовать приведенные выше дифференциальные зависимости. Порядок расчета. 1. Намечаем характерные сечения. 2. Определяем поперечные силы в характерных сечениях. 3. Строим эпюру . Характер эпюры, то есть тот факт, что эпюра пересекает ось, говорит о том, что в этом сечении момент будет иметь экстремальное значение. Действительно, пересечение эпюры с осью z означает, что в этом сечении , а из курса математики известно, что если производная функции равна нулю, то сама функция в данной точке имеет экстремальное значение.
Для определения положения “нулевого” сечения необходимо величину расположенной слева от него ординаты эпюры разделить на интенсивность распределенной нагрузки : Рис. 6.19
Определяем изгибающие моменты в характерных сечениях. 4. Вычисляем экстремальное значение изгибающего момента в сечении, где : Строим эпюру .
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|