Рис. 2.1. Распределение Гаусса
Геометрически величина σ совпадает с расстоянием от до точек перегиба кривой f(x) Гаусса, т. е. в точках x= ±σ функция плотности имеет точки перегиба, в которых кривая меняется с выпуклой на вогнутую. Графическая интерпретация связи между этими величинами имеет тот смысл, что для распределения Гаусса не зависимо от значений параметров и σ площадь под кривой составляет:
Широкое применение распределения Гаусса на практике объясняется тем фактом, что при нормальном распределении случайных величин, вероятность попадания значений за пределы довольно узкого интервала, с границами ±3σ, составляет всего 0, 0026, т. е. менее 0, 3 %. Использование распределения Гаусса и его свойств позволяет обрабатывать результаты санитарно-экологических наблюдений и за состоянием здоровья населения и за состоянием окружающей среды, определять степень их взаимосвязи и оценивать достоверность полученных результатов. На основе полученных данных в соответствии с формулами 1. 1 – 1. 26, приведёнными в работе 1 «Расчёт показателей заболеваемости взрослого населения», производится расчёт тех показателей, для расчёта которых имеются соответствующие данные, например: суммарный показатель заболеваемости, доля (удельный вес) различных форм и групп болезней и структура заболеваемости, число детей с врождёнными аномалиями, число посещений по поводу заболеваний и др. Итак, мы вычислили ряд показателей. Теперь надо убедиться, что они не случайны и отражают реальную картину состояния заболеваемости, другими словами, надо убедиться в их достоверности. Оценка достоверности полученных показателей осуществляется с использованием методов статистической обработки.
Для любого полученного показателя, прежде всего, необходимо вычислить стандартную среднюю ошибку. Стандартную среднюю ошибку m вычисляют по формуле (2. 5): , (2. 5) где m –величина стандартной средней ошибки; P– показатель заболеваемости; N – число наблюдений. Следует обратить внимание на то, что формула (2. 5) справедлива только для значений P< 1 000. Если величина утроенной стандартной средней ошибки превышает величину показателя заболеваемости, то такой показатель считают статистически не достоверным и он исключается из дальнейшей обработки. Для оценки достоверности различия сравниваемых показателей заболеваемости по выбранным территориям или когортами используют критерий Стьюдента-Фишера. При использовании этого критерия оценка достоверности производится по формуле (2. 6): , (2. 6) где: t – коэффициент достоверности; P1 и P2 – показатели заболеваемости в первой и второй когортах; m1 и m2 – стандартная средняя ошибка в первой и второй когортах. В табл. 2. 4 приведены значения коэффициентов достоверности и доверительного интервала. Значения коэффициента достоверности t сравнивают с табличным значением (табл. 2. 4). В большинстве случаев в медицинской практике, также как и в практике биологических и экологических исследований считают результаты приемлемо точными, если они попадают в доверительный интервал 0, 95. Это означает, что истинное значение изучаемого параметра с вероятностью 95 % находится в его пределах.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|