Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Граф схемы и некоторые его подграфы

 

При разработке машинных методов анализа электрических цепей можно определить некоторые их свойства, рассматривая только структуры цепи. Теория графов является для этого удобным средством.

Для описания топологии (структуры) цепи заменим каждую ветвь схемы отрезком линии, называемым ветвью графа, а узлы точками – узлами (вершинами) графа.

Эта совокупность ветвей и узлов, представляющая топологию цепи, называется графом.

Графы называют изоморфными, если их топологические свойства одинаковы.

Графы, у которых все ветви ориентированы, называют ориентированными. В противном случае граф считают неориентированным. Планарным называют граф, который в результате изоморфных преобразований может быть изображен на плоскости без пересечения ветвей. Планарной электрической схеме соответствует планарный граф. На рис. 3.1 показана схема электрической цепи (а) и ее ориентированный граф (б):

 

(а)                                               (б)

Рис. 3.1


Подграфом графа называют часть графа. Подграфом может быть одна ветвь, узел или множество ветвей и узлов, содержащееся в данном графе.

Путь – упорядоченная последовательность ветвей, в которой каждые две соседние ветви имеют общий узел, причем любая ветвь и любой узел встречаются в этом пути только один раз (4–2–3).

Контур – замкнутый путь, в котором один из узлов является начальным и конечным узлом пути (1–2–4). На рис. 3.1 один из контуров содержит ветви 1, 2, 4.

Если между любой парой узлов графа существует путь, то граф называют связным.

Деревом связного графа называют связный подграф, содержащий все узлы графа, но не содержащий ни одного контура.

Примеры деревьев графа на рис. 3.1, б приведены на рис. 3.2:

 

Рис. 3.2

 

Ветви графа, которые дополняют дерево до исходного графа, называют ветвями связи (хордами). Ветви графа, входящие в дерево, называют ребрами. Если граф содержит р ветвей и q узлов, то число ветвей любого дерева d = q -1, а число ветвей связи k = p - q + 1.

Ветви связи деревьев графа на рис. 3.1, б приведены на рис. 3.3:

 


Рис. 3.3

 

Сечением графа называют множество ветвей, удаление которых делит граф на два изолированных подграфа, один из которых в частном случае может быть изолированным узлом.

Например, ветви графа 1–4–6, 3–2–4–6, 3–5–6 образуют сечения (рис. 3.4):

 

Рис. 3.4

 

Главным контуром называют контур, состоящий из ветвей дерева и только одной ветви связи. Другими словами, при соединении любой ветви связи с деревом образуется главный контур. Главным сечением считается сечение, состоящее из ветвей связи и только одной ветви дерева. Каждая ветвь дерева позволяет образовать одно сечение.

На рис. 3.5 показаны главные сечения, главные контуры для выделенного дерева графа (рис. 3.1, б):


Рис. 3.5

 

Топологические матрицы графа

Матрица соединений

Матрица соединений (инциденций) А – это таблица коэффициентов уравнений, составленных по первому закону Кирхгофа (ЗКТ) для узлов.

Строки этой матрицы соответствуют узлам, столбцы – ветвям. Элементы а ij матрицы А определяются следующим образом:

aij = 1, если ветвь j соединена с узлом i и направлена от узла;

aij = -1, если ветвь j соединена с узлом i и направлена к узлу;

aij =0, если ветвь j не соединена с узлом i.

Число строк матрицы А равно числу независимых узлов g = q -1.

 

Матрица сечений

Матрица сечений D – это таблица коэффициентов уравнений, составленных по первому закону Кирхгофа (ЗКТ) для сечений. Строки матрицы D соответствуют сечениям, столбцы – ветвям.

Элемент dij матрицы D =[ dij ] определяется следующим образом:

dij =1, если ветвь j содержится в сечении i и направлена согласно с направлением сечения;

dij =- 1, если ветвь j содержится в сечении i и направлена противоположно направлению сечения;

dij = 0, если ветвь j не содержится в сечении i.

Если матрица D составлена для главных сечений, то ее называют матрицей главных сечений. При этом за положительное направление сечения обычно принимают направление ветви дерева данного сечения. Число строк матрицы D равно числу независимых сечений g.

Закон Кирхгофа для сечений в матричной форме записывают следующим образом (ЗКТ):

 

                                           (3.3)

 

Если матрицу напряжений ветвей дерева (ребер) обозначить через Ug, то

,                                                            (3.4)

 

т.е. напряжения ветвей схемы, определяют через напряжения ветвей дерева (ребер).

Если ветвям дерева присвоены первые номера, то матрица главных сечений может быть разложена на две подматрицы:

D = [ 1 F ],                                       (3.5)

 

где 1 – единичная подматрица порядка q -1, столбцы которой соответствуют ребрам;

F – подматрица, столбцы которой соответствуют ветвям связи (хордам).

Матрица контуров

Матрица контуров С – это таблица коэффициентов уравнений, составленных по второму закону Кирхгофа (ЗКН). Строки матрицы С соответствуют контурам, столбцы – ветвям.

Элементы с ij матрицы С = [ с ij ] определяются следующим образом:

с ij = 1, если ветвь j содержится в контуре i и направление ветви совпадает с направлением обхода контура;

с ij =-1, если ветвь j содержится в контуре i и направление ветви противоположно направлению обхода контура;

с ij = 0, если ветвь j не содержится в контуре i.

Матрицу С, записанную для главных контуров, называют матрицей главных контуров. При этом за направление обхода контура принимают направление ветви связи этого контура.

Второй закон Кирхгофа для напряжений в матричной форме записывают следующим образом (ЗКН):

 

                                  (3.6)

 

Токи всех обобщенных ветвей могут быть выражены как линейные комбинации токов обобщенных ветвей связи (контурных токов)

 

                                                             (3.7)

 

где I К – столбовая матрица контурных токов.

Если ветвям дерева присвоены первые номера, то матрица главных контуров состоит из двух подматриц:

 

                                    (3.8)

 

где F – подматрица матрицы сечений C, составленная на основании того же самого дерева;

1 – единичная подматрица порядка k =р- q +l.

Таким образом, в матричной форме могут быть записаны:

– первый закон Кирхгофа (ЗКТ):

                    (3.9)

 

– второй закон Кирхгофа (ЗКН):

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...