Модуль 4. Числовые характеристики случайных величин и векторов
Цель модуля: На основе расширения понятия интеграла как интеграла от непрерывной функции по вероятностной мере определить понятия числовых характеристик. Показать на основе механической и геометрической интерпретации распределения вероятностной меры вероятностный смысл числовых характеристик. Научиться вычислять значения числовых характеристик и понимать их роль в изучении особенностей законов распределения случайных величин. Использование определения интеграла Римана-Стилтьеса от непрерывной функции а) законы распределения функций случайных величин; б) значения различных числовых характеристик случайных величин. И в определении интеграла Римана, и в определении интеграла Римана-Стилтьеса область Q Закон распределения случайной величины, записанный в одной из его форм с помощью вероятностной функции P или с помощью функции распределения
Наиболее употребительными числовыми характеристиками являются математическое ожидание – среднее значение случайной величины и дисперсия – мера рассеяния, разброса значений случайной величины около её математического ожидания. Знание числовых значений математического ожидания и дисперсии служит задаче формулирования выводов о случайной величине и первичного представления о характере распределения её возможных значений. При исследовании многомерной случайной величины, помимо математических ожиданий и дисперсий её компонент, рассматриваются ковариационные моменты, показывающие наличие и силу статистической связи между компонентами. Если статистические связи между компонентами имеют линейный характер, то в качестве оценки силы этой связи используется коэффициент линейной корреляции. Функция регрессии, какого бы вида она ни была, описывает изменение значений условных математических ожиданий одной из компонент случайного вектора при изменении другой компоненты. То есть функция регрессии описывает изменение средних значений одной из случайных величин, когда другая случайная величина изменяется в области своих возможных значений.
Модуль 5. Классическая предельная проблема теории вероятностей Цель модуля: Показать, что решение многих практических задач (в математике и механике, экономике и финансах, физике и химии, биологии и геологии и т.п.) базируется на основе знания законов распределения случайных величин, являющихся суммами большого числа независимых случайных величин – факторов. Знание результатов решения классической предельной проблемы позволит принимать план действий и делать обоснованные выводы при решении задач математической статистики.
В предельной проблеме теории вероятностей изучаются законы распределения случайных величин, являющиеся суммами случайных величин: Придерживаясь исторического аспекта в изложении предельной проблемы, сначала рассматриваем случайную величину, имеющую биномиальное распределение вероятностей 1) Если проводится большое число повторных независимых испытаний (n – велико), то решение практических задач проводится путём применения локальной и интегральной теорем Муавра-Лапласа, согласно которым:
Суть этих теорем состоит в том, что при больших значениях n биномиальное распределение вероятностей хорошо аппроксимируется нормальным распределением N То есть из интегральной теоремы Муавра-Лапласа следует, что для функции распределения случайной величины
2) Случайная величина
Суть этой теоремы состоит в том, что при неограниченном увеличении n относительная частота с вероятностью близкой к единице ведёт себя как постоянная величина p. 3) Если вероятность p наступления события A в одном испытании «очень мала», а проводится большое число испытаний то, согласно теореме Пуассона, хорошую аппроксимацию биномиального распределения вероятностей возможных значений случайной величины
Случайная величина
Случайную величину Интегральную теорему Муавра-Лапласа можно теперь сформулировать так: Если
Аналогично теорему Бернулли можно, переписать так:
Если обозначить: Если
Обращаясь к теореме Пуассона, рассмотрим «двойную» последовательность бернуллиевских случайных величин Теорема Пуассона: Если
Суммируя всё, можем сказать, что для случайной величины Естественно возникает вопрос: «А если снять ограничение, состоящее в том, что случайные величины
Определяем три новых понятия: «Закон больших чисел», «Центральная предельная теорема» и «Закон малых чисел». Знакомимся с теоремами, в которых на последовательности случайных величин 1) 2) 3) Необходимо уметь объяснить практическую значимость предельных теорем для последовательностей независимых случайных величин.
Математическая статистика Модуль 6. Первичная обработка статистических данных. Точечные оценки числовых характеристик Цель модуля: Узнать новую терминологию, понятия и определения математической статистики. Показать приёмы и правила первичной обработки статистических данных, принципы выбора точечных оценок числовых характеристик изучаемых случайных величин. Математическая статистика - самостоятельная математическая дисциплина, имеющая свой словарь терминов, с которым мы знакомимся, как и при изучении теории вероятностей, путём введения основных понятий и определений. Изучение свойств введённых терминов и формулирование выводов, которые делаются по результатам обработки статистических данных, проводятся путём использования основных положений теории вероятностей. Надо всё время иметь в виду, что все объекты и построения математической статистики являются экспериментальными моделями объектов и построений, которые вводились и изучались в теории вероятностей. Первыми основными понятиями являются понятия «генеральная совокупность» и «выборка». Генеральная совокупность – это все объекты, обладающие интересующим нас количественным признаком. Исследуемый количественный признак – случайная величина. Каждый объект генеральной совокупности имеет определённое значение количественного признака. Это значение количественного признака является одним из возможных значений случайной величины. Наблюдая объекты генеральной совокупности, мы фиксируем возможные значения случайной величины. Частота встречаемости возможных значений случайной величины определяется законом распределения вероятностей этой случайной величины. Однако не всегда удаётся, а иногда просто невозможно, обследовать все объекты генеральной совокупности для определения значения количественного признака, которым они обладают. Для изучения случайной величины из генеральной совокупности отбирают некоторое количество объектов и определяют значения количественного признака, которым обладают эти объекты.
Полученные значения количественного признака Различные методики отбора объектов из генеральной совокупности, стремятся обеспечить репрезентативность получаемых данных. Мы отмечаем, что попадание каждого объекта в выборку должно быть независимым от остальных объектов. Измерения значений количественного признака у выбранных объектов должны проводиться по одной методике, в одинаковых условиях и одним и тем же инструментом. Если полученная выборка При первичной обработке статистических данных строится вариационный ряд, являющийся, по существу, рядом распределения эмпирической случайной величины Случайная величина Обобщая сказанное, теоретические числовые характеристики исследуемой случайной величины обозначим Любая точечная оценка Но функций от элементов выборки можно придумать много. И каждую придуманную функцию можно предложить в качестве статистической оценки теоретической числовой характеристики. Возникает вопрос: «Как выбрать из множества предлагаемых точечных оценок наилучшую оценку?». Чтобы ответить на этот вопрос, мы должны сформулировать требования, исходящие из здравого смысла, и проверять выполнение этих требований к предлагаемым точечным оценкам. Та оценка, которая будет удовлетворять всем требованиям, будет наилучшей оценкой и будет принята в качестве точечной оценки неизвестного значения числовой характеристики. Формулировки требований состоятельности, несмещённости и эффективности, предъявляемые к точечным оценкам, основаны на знании закона больших чисел и центральной предельной теоремы теории вероятностей. Логичность и справедливость этих требований не вызывает сомнений. Рассматриваемые методы получения точечных оценок, позволяют обоснованным теорией вероятностей путём получать их и проверять выполнение сформулированных требований к ним.
Модуль 7. Интервальные оценки числовых характеристик Цель модуля: Продолжить знакомство с приёмами первичной обработки статистических данных. Узнать три типа распределений случайных величин, которые используются при определении закона распределения различных функций статистических данных. Кроме точечной оценки
Вероятность Ясно, что границы интервала, как функции элементов выборки, являются статистиками – случайными величинами: Наиболее часто в математической статистике используются три распределения вероятностей: распределение Пирсона, распределение Стьюдента и распределение Фишера-Снедекора. Случайные величины Применение этих трёх распределений в математической статистике основано на предположении о нормальном распределении исследуемого количественного признака, определённого на генеральной совокупности, и некоторых статистик, что, в свою очередь, обосновывается центральной предельной теоремой теории вероятностей.
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|