В таблице приведены данные о высоте подброшенного над землей вверх тела (h, м) в зависимости от времени (t, cек) прошедшего с момента броска.
t i
hi
2,3
3,71
4,8
5,9
6,3
6,25
5,87
4,82
3,7
2,2
В предположении, что между t и h существует квадратичная зависимость, определить параметры регрессии методом наименьших квадратов. Спрогнозировать высоту тела на 11 сек.
В боковой стенке высокого цилиндрического бака у самого дна закреплен кран. После его открытия вода начинает вытекать из бака. В таблице приведены данные об изменении высоты (h, м) и времени (t, мин).
t i
hi
3,6
3,2
2,57
1,95
1,45
1,09
0,9
0,6
0,3
0,1
В предположении, что между t и h существует квадратичная зависимость, определить параметры регрессии методом наименьших квадратов. Спрогнозировать время, когда бак опустеет.
В таблице приведены данные о времени работы (t, у.е.) некоторого алгоритма в зависимости от количества его элементов (x).
хi
ti
В предположении, что между х и у существует квадратичная зависимость, определить параметры регрессии методом наименьших квадратов. Спрогнозировать время работы алгоритма, состоящего из 30 элементов.
При моделировании распространения сетей беспроводного доступа были получены следующие данные о стоимости подключения потенциального абонента (у, у.е.) в зависимости от радиуса обслуживания базовой станции (x, км.) при плотности населения чел./км2.
хi
1,5
2,5
3,5
4,5
уi
В предположении, что между х и у существует квадратичная зависимость, определить параметры регрессии методом наименьших квадратов. Спрогнозировать стоимость подключения потенциального абонента в случае, если радиус обслуживания базовой станции составит 6,5 км.
В таблице приведены данные о высоте подброшенного над землей вверх тела (h, м) в зависимости от времени (t,cек) прошедшего с момента броска.
t i
1,2
5,1
5,9
9,8
hi
2,3
3,71
4,81
5,9
6,3
6,25
5,87
4,82
3,7
2,29
В предположении, что между t и h существует квадратичная зависимость, определить параметры регрессии методом наименьших квадратов. Спрогнозировать высоту тела на 10 сек.
С ростом диагонали экрана качество изображения падает по квадратичной зависимости. В таблице приведены данные о длине диагонали экрана (х, дюйм) и качестве изображения (у, %) при нахождении на фиксированном расстоянии от экрана.
хi
уi
68,5
66,5
65,5
В предположении, что между х и у существует квадратичная зависимость, определить параметры регрессии методом наименьших квадратов. Проанализировать, каким может быть качество изображения при диагонали экрана 40 дюймов.
Зависимость температуры T (в градусах Кельвина) от времени t (в минутах) для нагревательного элемента некоторого прибора была получена экспериментально и приведена в таблице
t i
3,2
3,6
5,0
5,9
7,3
Ti
В предположении, что между T и t существует квадратичная зависимость, определить параметры регрессии методом наименьших квадратов. Известно, что при температурах нагревателя свыше 1500 К прибор может испортиться, поэтому его нужно отключать. Определите (в минутах) через какое наибольшее время после начала работы нужно отключать прибор.
В таблице приведены данные о времени работы (, мсек.) некоторого алгоритма в зависимости от количества его элементов (x).
хi
i
В предположении, что между х и существует квадратичная зависимость, определить параметры регрессии методом наименьших квадратов. Спрогнозировать время работы алгоритма, состоящего из 10 элементов.
При моделировании распространения сетей беспроводного доступа были получены следующие данные о стоимости подключения потенциального абонента (у, у.е.) в зависимости от плотности населения (x, чел./км2.) при возможном коэффициенте пропускания услуги (радиусе обслуживания базовой станции) км.
хi
уi
В предположении, что между х и у существует квадратичная зависимость, определить параметры регрессии методом наименьших квадратов. Спрогнозировать стоимость подключения потенциального абонента при плотности населения 100 чел./км2.
В таблице приведены данные о зависимости выделяемой резистором мощности Р (усл. ед.) от напряжения U (усл. ед.)
Ui
Pi
90,2
999,9
В предположении, что между U и P существует квадратичная зависимость , определить параметры регрессии методом наименьших квадратов. Спрогнозировать мощность при напряжении 170.
При моделировании распространения сетей беспроводного доступа были получены следующие данные о стоимости подключения потенциального абонента (у, у.е.) в зависимости от радиуса обслуживания базовой станции (x, км.) при плотности населения чел./км2.
хi
1,2
1,4
1,7
2,4
2,8
3,2
3,6
уi
В предположении, что между х и у существует квадратичная зависимость, определить параметры регрессии методом наименьших квадратов. Спрогнозировать стоимость подключения в случае, если радиус обслуживания базовой станции составит 5 км.
В таблице приведены данные о высоте подброшенного над землей вверх тела (h, м) в зависимости от времени (t,cек) прошедшего с момента броска.
t i
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
hi
10,2
10,37
10,5
10,6
10,76
10,8
10,9
11,1
11,2
В предположении, что между t и h существует квадратичная зависимость, определить параметры регрессии методом наименьших квадратов. Спрогнозировать высоту тела на 2-ой сек.
С ростом диагонали экрана качество изображения падает по квадратичной зависимости. В таблице приведены данные о длине диагонали экрана (х, дюйм) и качестве изображения (у, %) при фиксированном расстоянии от экрана.
хi
уi
69,5
68,5
67,5
64,5
62,5
53,5
В предположении, что между х и у существует квадратичная зависимость, определить параметры регрессии методом наименьших квадратов. Проанализировать, каким может быть качество изображения при диагонали экрана 42 дюйма.
В таблице приведены данные о показателях конкуренции (x) и средневзвешенные по частоте упоминания количества патентов (у)
хi
0,87
0,88
0,89
0,9
0,91
0,92
0,93
0,94
0,95
0,96
уi
3,35
3,62
4,21
4,5
4,9
5,3
5,8
6,11
6,3
6,1
В предположении, что между х и у существует квадратичная зависимость, определить параметры регрессии методом наименьших квадратов. Спрогнозировать количество патентов, в случае, если показатель конкуренции равен 0,86.
При моделировании распространения сетей беспроводного доступа были получены следующие данные о стоимости подключения потенциального абонента (у, у.е.) в зависимости от требуемой пропускной способности (x, Мбит/с.) при плотности населения чел./км2
хi
0,1
0,2
0,5
0,7
0,8
0,9
1,1
1,2
1,8
уi
В предположении, что между х и у существует квадратичная зависимость, определить параметры регрессии методом наименьших квадратов. Спрогнозировать стоимость подключения, если желаемая скорость доступа составляет 2 Мбит/с.