Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Статистическое равновесие.. §1.6.Фазовое пространство. Функция распределения.




Статистическое равновесие.

Если замкнутая макросистема находится в состоянии, в котором для каждой ее части, также являющейся самой по себе макросистемой, физические величины с большой относительной точностью равны своим средним значениям, то рассматриваемая замкнутая система находится в состоянии статистического равновесия.

Если система наблюдается в течение достаточно большого промежутка времени, то подавляющую часть этого промежутка оно проводит в состоянии статистического равновесия.

 Если в какой-то начальный момент времени система не находилась в состоянии статистического равновесия (например, искусственно была выведена из него внешними воздействиями, а потом снова стала замкнутой), то в дальнейшем она обязательно перейдет в состояние статистического равновесия. Промежуток времени перехода в статистическое равновесие называется   временем релаксации.

§1. 6. Фазовое пространство. Функция распределения.

Рассмотрим идеальный газ (нет взаимодействия между молекулами). Полная энергия идеального газа есть сумма кинетических энергий отдельных молекул: , где . Поскольку молекулы не взаимодействуют, то каждая молекула может быть рассмотрена как квазизамкнутая подсистема. Обмен энергиями происходит при редких столкновениях молекул. Все молекулы обладают разными скоростями, даже в положении равновесия.

Подсистему (молекулу) будем характеризовать координатами и скоростями (или импульсами): x, y, z, px, py, pz. Таким образом, 6 величин задают положение частицы и ее состояние.

x
z
y
· (x, y, z)
px(vx)
py(vy)
pz(vz)
· (px, py, pz)

Рис. 1. 1. Координатное и импульсное фазовые пространства.

Введем понятие фазового пространства как пространства координат и импульсов (скоростей). Для подсистемы из одной молекулы это 6-ти мерное пространство. Различные состояния частицы можно изображать точками этого фазового пространства. С течением времени состояние частицы будет меняться, и тогда, соединяя все положения точек в различные моменты времени, получим фазовую линию в этом пространстве. Если система состоит из двух молекул, то их состояние задается 6+6 = 12 величинами, и мы имеем 12-ти мерное фазовое пространство.

Рассмотрим фазовое пространство в общем случае. Пусть рассматриваемая макросистема имеет n степеней свободы, т. е. положение точек этой системы в пространстве характеризуется n координатами, которые обозначим за qi (i=1, 2, 3,..., n). Состояние системы тогда определяется n координатами qi и n скоростями  (или импульсами pi). Введем фазовое пространство системы с числом измерений 2n. С течением времени состояние системы меняется и в фазовом пространстве, и это описывается фазовой линией.

Каждая система имеет свое фазовое пространство. Вероятность реализации различных состояний системы есть функция от координат и импульсов той системы. Координаты и импульсы в этом пространстве меняются непрерывном образом, а для непрерывных значений необходимо задавать элемент объема фазового пространства (как произведение координатной и импульсной частей объема):

                                                       (1. 33)

Это малая область пространства, куда может попасть система (поскольку точка не имеет измерения). Для одной частицы имеем

.                                             (1. 34)

Для n частиц

   (1. 35)

Рассмотрим вероятность попадания системы в элемент этого фазового объема для идеального газа. Вероятность нахождения частицы в объеме  известна: , где  - координатный кусок фазового пространства,  - весь пространственный объем. В силу равной вероятности нахождения частицы в любой точке пространства можно записать . Причем в идеальном газе можно следить за состоянием 1 частицы в течение длительного времени (и определить  в каждом i-ом состоянии) или следить сразу за

DV=DGq
y
z
x
DGp
py
pz
px

Рис. 1. 2. Элементы объёмов в координатном и импульсном фазовом пространстве.

 

всем коллективом и считать, сколько частиц попало в данный элемент фазового объема. Итак, для координатной части вероятность  пропорциональна объёму (если нет внешнего поля). Для пространства импульсов энергия системы постоянна

                                                      (1. 36)

что вносит ограничение на элементы объема импульсов.

В общем случае элемент фазового объема , и тогда вероятность частицы попасть в этот элемент фазового объема можно записать

,                                            (1. 37)

где  - плотность вероятности (функции распределения) для системы иметь координаты и импульсы (скорости) в этом элементе объема. Запись (1. 37) для вероятности справедлива для любой квазизамкнутой системы.

Свойства функции распределения.

Рассмотрим основные свойства функции распределения. Во-первых, выполняется условие нормировки , где интегрирование ведется по всему фазовому объему. Во-вторых, среднее значение физической величины  определяется выражением

                                                  (1. 38)

Наконец, в-третьих, функция распределения обладает свойством стационарности. Рассматриваем подсистему в течение большого промежутка времени, который разобьем на большое число маленьких промежутков с моментами времени между ними t1, t2, t3,.... В эти моменты времени подсистема в фазовом пространстве изображается точкой. Количество этих точек в единице объема этого пространства (т. е. их плотность) будет пропорционально значению функции распределения .

Через момент времени Dt состояния всех одновременно рассматриваемых подсистем изменяется согласно уравнениям механики. Новые состояния подсистем (они совпадают с состояниями исходной подсистемы в моменты t1+Dt, t2+Dt,.... ) изобразятся в фазовом пространстве точками, которые с тем же правом, что и предыдущие, будут распределены с плотностью ~ . Логично предположить, что обе совокупности точек описываются одной и той же функцией распределения. Это свойство квазизамкнутых систем называется свойством стационарности статистического распределения. Имеет место теорема Лиувилля.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...