Статистическое равновесие.. §1.6.Фазовое пространство. Функция распределения.
Статистическое равновесие. Если замкнутая макросистема находится в состоянии, в котором для каждой ее части, также являющейся самой по себе макросистемой, физические величины с большой относительной точностью равны своим средним значениям, то рассматриваемая замкнутая система находится в состоянии статистического равновесия. Если система наблюдается в течение достаточно большого промежутка времени, то подавляющую часть этого промежутка оно проводит в состоянии статистического равновесия. Если в какой-то начальный момент времени система не находилась в состоянии статистического равновесия (например, искусственно была выведена из него внешними воздействиями, а потом снова стала замкнутой), то в дальнейшем она обязательно перейдет в состояние статистического равновесия. Промежуток времени перехода в статистическое равновесие называется временем релаксации. §1. 6. Фазовое пространство. Функция распределения. Рассмотрим идеальный газ (нет взаимодействия между молекулами). Полная энергия идеального газа есть сумма кинетических энергий отдельных молекул: , где . Поскольку молекулы не взаимодействуют, то каждая молекула может быть рассмотрена как квазизамкнутая подсистема. Обмен энергиями происходит при редких столкновениях молекул. Все молекулы обладают разными скоростями, даже в положении равновесия. Подсистему (молекулу) будем характеризовать координатами и скоростями (или импульсами): x, y, z, px, py, pz. Таким образом, 6 величин задают положение частицы и ее состояние.
Рис. 1. 1. Координатное и импульсное фазовые пространства.
Введем понятие фазового пространства как пространства координат и импульсов (скоростей). Для подсистемы из одной молекулы это 6-ти мерное пространство. Различные состояния частицы можно изображать точками этого фазового пространства. С течением времени состояние частицы будет меняться, и тогда, соединяя все положения точек в различные моменты времени, получим фазовую линию в этом пространстве. Если система состоит из двух молекул, то их состояние задается 6+6 = 12 величинами, и мы имеем 12-ти мерное фазовое пространство. Рассмотрим фазовое пространство в общем случае. Пусть рассматриваемая макросистема имеет n степеней свободы, т. е. положение точек этой системы в пространстве характеризуется n координатами, которые обозначим за qi (i=1, 2, 3,..., n). Состояние системы тогда определяется n координатами qi и n скоростями (или импульсами pi). Введем фазовое пространство системы с числом измерений 2n. С течением времени состояние системы меняется и в фазовом пространстве, и это описывается фазовой линией. Каждая система имеет свое фазовое пространство. Вероятность реализации различных состояний системы есть функция от координат и импульсов той системы. Координаты и импульсы в этом пространстве меняются непрерывном образом, а для непрерывных значений необходимо задавать элемент объема фазового пространства (как произведение координатной и импульсной частей объема): (1. 33) Это малая область пространства, куда может попасть система (поскольку точка не имеет измерения). Для одной частицы имеем . (1. 34) Для n частиц (1. 35) Рассмотрим вероятность попадания системы в элемент этого фазового объема для идеального газа. Вероятность нахождения частицы в объеме известна: , где - координатный кусок фазового пространства, - весь пространственный объем. В силу равной вероятности нахождения частицы в любой точке пространства можно записать . Причем в идеальном газе можно следить за состоянием 1 частицы в течение длительного времени (и определить в каждом i-ом состоянии) или следить сразу за
Рис. 1. 2. Элементы объёмов в координатном и импульсном фазовом пространстве.
всем коллективом и считать, сколько частиц попало в данный элемент фазового объема. Итак, для координатной части вероятность пропорциональна объёму (если нет внешнего поля). Для пространства импульсов энергия системы постоянна (1. 36) что вносит ограничение на элементы объема импульсов. В общем случае элемент фазового объема , и тогда вероятность частицы попасть в этот элемент фазового объема можно записать , (1. 37) где - плотность вероятности (функции распределения) для системы иметь координаты и импульсы (скорости) в этом элементе объема. Запись (1. 37) для вероятности справедлива для любой квазизамкнутой системы. Свойства функции распределения. Рассмотрим основные свойства функции распределения. Во-первых, выполняется условие нормировки , где интегрирование ведется по всему фазовому объему. Во-вторых, среднее значение физической величины определяется выражением (1. 38) Наконец, в-третьих, функция распределения обладает свойством стационарности. Рассматриваем подсистему в течение большого промежутка времени, который разобьем на большое число маленьких промежутков с моментами времени между ними t1, t2, t3,.... В эти моменты времени подсистема в фазовом пространстве изображается точкой. Количество этих точек в единице объема этого пространства (т. е. их плотность) будет пропорционально значению функции распределения . Через момент времени Dt состояния всех одновременно рассматриваемых подсистем изменяется согласно уравнениям механики. Новые состояния подсистем (они совпадают с состояниями исходной подсистемы в моменты t1+Dt, t2+Dt,.... ) изобразятся в фазовом пространстве точками, которые с тем же правом, что и предыдущие, будут распределены с плотностью ~ . Логично предположить, что обе совокупности точек описываются одной и той же функцией распределения. Это свойство квазизамкнутых систем называется свойством стационарности статистического распределения. Имеет место теорема Лиувилля.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|