Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Комбинативная изменчивость




Генотипическая, или наследственная изменчивость, представляет собой изменения фенотипа, обусловленные изменениями генотипа.

Она вызывается мутациями и их комбинациями при половом размножении (например, наследуемая комолость у крупного рогатого скота).

В зависимости от характера варьирования генетического материала различают комбинативную и мутационную наследственную изменчивость. Комбинативная изменчивость обусловлена образованием у потомков новых сочетаний генов в генотипах, формирующихся в результате перекомбинирования генов и хромосом в процессе полового размножения. Бесконечное разнообразие генотипов живых организмов, уникальность каждого генотипа обусловлены комбинативной изменчивостью. При этом типе изменчивости изменяются сочетания генов и характер их взаимодействия в генотипе, а сами гены остаются неизмененными.

Комбинативная изменчивость, являясь результатом перекомбини-рования генов родительских особей в генотипах потомков, основывается на трёх основных механизмах.

1. Независимое расхождение в дочерние клетки (сперматоциты II, ооцит II и первое редукционное тельце) гомологичных хромосом из каждой пары (имеет место при I делении мейоза в ходе гаметогенеза). Например, даже для 2-х пар хромосом возможны 2 варианта расхождения хромосом в дочерние клетки и 4 типа сперматозоидов (рис. 76).

Кроссинговер происходит в начале мейоза, когда гомологичные хромосомы выстраиваются друг против друга. При этом участки гомологичных хромосом перекрещиваются, отрываются, а затем вновь присоединяются, но уже к другой хромосоме. В конечном итоге образуются четыре хромосомы с разными комбинациями генов. Хромосомы, называемые «рекомбинантными», несут новые комбинации генов (Ab и аВ), отсутствовавшие в исходных хромосомах (АВ и ab)

2. Случайное сочетание гамет, а следовательно, гомологичных (отцовской и материнской) хромосом при оплодотворении. Для отмеченных выше 4 типов спермиев сугубо случайным будет участие одного из них в оплодотворении яйцеклетки, и различными будут результаты конкретного сочетания одного из вариантов мужских хромосом с одним (также из 4-х возможных, т.к. три варианта унесены редукционными тельцами и прекратили существование) из вариантов гомологичных им женских хромосом.

3. Обмен отдельными аллелями между гомологичными хромосомами в процессе кроссинговера мейоза. После него комбинации аллелей в хромосомах спермиев характеризуются новыми вариантами, отличающимися от таковых соматических клеток организма (рис. 77).

Комбинативная изменчивость объясняет, почему у детей обнаруживаются новые сочетания признаков родственников по материнской и отцовской линиям, причём в таких конкретных вариантах, которые не были свойственны ни отцу, ни матери, ни дедушке, ни бабушке и т.д.

Благодаря комбинативной изменчивости создаётся разнообразие генотипов в потомстве, что имеет большое значение для эволюционного процесса в связи с тем, что: 1) увеличивается разнообразие материала для эволюционного процесса без снижения жизнеспособности особей; 2) расширяются возможности приспособления организмов к изменяющимся условиям среды и тем самым обеспечивается выживание группы организмов (популяции, вида) в целом.

Комбинативная изменчивость используется в селекции с целью получения более ценного в хозяйственном отношении сочетания наследственных признаков. В частности применяется явление гетерозиса, повышения жизнеспособности, интенсивности роста и других показателей при гибридизации между представителями различных подвидов или сортов. Ярко выражено оно, например, у кукурузы (рис. 78), обусловливая значительный экономический эффект. Противоположный эффект даёт явление инбридинга или близкородственного скрещивания - скрещивания организмов, имеющих общих предков. Общность происхождения скрещиваемых организмов увеличивает у них вероятность наличия одних и тех же аллелей любых генов, а следовательно - вероятность появления гомозиготных организмов. Наибольшая степень инбридинга достигается при самоопылении у растений и самооплодотворении у животных. Гомозиготность увеличивает возможность проявления рецессивных аллельных генов, мутагенные изменения которых приводят к появлению организмов с наследственными аномалиями.

Результаты изучения явления комбинативной изменчивости используются в медико-генетическом консультировании, особенно на его втором

и третьем этапах: прогноз потомства, формирование заключения и объяснение смысла генетического риска. В консультировании будущих супружеских пар используется установление вероятности наличия у каждого из двух индивидуумов аллелей, полученных от общего предка и идентичных по происхождению. Для этого используют коэффициент родства, выражаемый в долях единицы. У монозиготных близнецов он равен 1, у родителей и детей, братьев и сестёр - 1/2, у деда и внука, дяди и племянника -1/4, у двоюродных сибсов (братьев и сестёр) - 1/8, у троюродных сибсов -1/32 и т.д.

Для характеристики степени гомозиготизации организма используется коэффициент инбридинга, который отражает долю локусов в генотипе потомка конкретной пары родителей, по которым он гомозиготен:

F = (l/2)"+"1+1-(l + Fr).

При этом п = П] и равно числу поколений, считая от общего предка до родителей индивидуума; Fz - коэффициент инбридинга для общего предка (если предок неинбреден, то Fz = 0).

Неблагоприятные последствия инбридинга высокой степени (с большим значением коэффициента инбридинга) служат генетическим обоснованием нежелательности близкородственных браков у человека. Различают следующие системы браков: 1) случайный подбор брачной пары в определённой группе людей (панмиксия); 2) более частое, чем при панмиксии, вступление в брак индивидуумов, состоящих в родстве (инбридинг); 3) более редкое, чем при панмиксии, вступление в брак индивидуумов, состоящих в родстве (аутбридинг).

Наряду с системами браков выделяют два типа образования брачных пар:

1) положительное ассортативное (избирательное) образование брачных пар, или более частое вступление в брак индивидуумов, сходных по определённым фенотипическими признаками (браки между глухонемыми, или сходными по росту, по умственному развитию и т.п.);

2) отрицательное ассортативное образование брачных пар, или более редкое вступление в брак индивидуумов со сходными определёнными признаками (например, рыжеволосые особи избегают вступать в брак друг с другом).

Как инбридинг, так и положительное ассортативное образование брачных пар повышают (последнее, правда, в меньшей степени) уровень гомозиготности потомков, в том числе и по локусам вредных рецессивных аллелей. Аутбридинг, наоборот, повышает степень гетерозиготности и во многих случаях повышает уровень жизнеспособности. Возможные последствия инбридинга и положительного ассортативного образования брачных пар используются в медико-генетическом консультировании потенциальных брачных партнёров.

С учётом этого во многих странах существуют запретные (инцестные) браки между ближайшими родственниками, например, братом и сестрой, а в более чем в 1/3 штатов США запрещены браки между двоюродными сибсами. Хотя история свидетельствует о допущении в отдельных случаях таких браков (в племени эрнодан, живущем на полуострове Индостан, старшая дочь обычно становится второй женой отца). Более высокая степень близкородственных браков наблюдается в малых по размерам группах людей, изолированных географически, или из-за религиозных и других убеждений.

33) Мутационная изменчивость. Характеристика мутаций. Понятие о генных и хромосомных болезнях. Биологические антимутационные механизмы.

Мутационная изменчивость

Типы мутаций

Мутации (от латинского mutatio – изменение, перемена) – устойчивые изменения генетического материала и, как следствие, наследуемого признака. Они являются начальным звеном патогенеза наследственных болезней.

По виду клеток, в которых произошли изменения, мутации можно разделить на:

– гаметические (от греческого gamete – супруга), или генеративные – мутации в половых клетках. Они наследуются и, как правило, обнаруживаются во всех клетках потомков, ставших их носителями;

– соматические – мутации в неполовых клетках организма. Проявляются у того индивида, у которого они возникают. Они передаются только дочерними клетками при делении и не наследуются следующими поколениями индивида. Если соматическая мутация возникает на ранних стадиях дробления зиготы (но не первого деления), возникают клеточные линии с различными генотипами. Чем раньше в онтогенезе происходит соматическая мутация, тем больше клеток и соответственно ткани несет данную мутацию. Подобные организмы получили название мозаичных.

 
 

В соответствии с уровнем организации наследственных структур различают генные, хромосомные и геномные мутации.

Генные мутации

Генные мутации представляют собой молекулярные, не видимые в световом микроскопе изменения структуры ДНК. К мутациям генов относятся любые изменения молекулярной структуры ДНК, независимо от их локализации и влияния на жизнеспособность. Некоторые мутации не оказывают никакого влияния на структуру и функцию соответствующего белка. Другая (большая) часть генных мутаций приводит к синтезу дефектного белка, не способного выполнять свойственную ему функцию.

По типу молекулярных изменений выделяют:

– делеции (от латинского deletio – уничтожение), т.е. утрата сегмента ДНК от одного нуклеотида до гена;

– дупликации (от латинского duplicatio удвоение), т.е. удвоение или повторное дублирование сегмента ДНК от одного нуклеотида до целых генов;

– инверсии (от латинского inversio – перевертывание), т.е. поворот на 180о сегмента ДНК размерами от двух нуклеотидов до фрагмента, включающего несколько генов;

– инсерции (от латинского insertio – прикрепление), т.е. вставка фрагментов ДНК размером от одного нуклеотида до целого гена.

Именно генные мутации обуславливают развитие большинства наследственных форм патологии. Болезни, обусловленные подобными мутациями, называют генными, или моногенными болезнями, т.е. заболеваниями, развитие которых детерминируется мутацией одного гена.

В настоящее время насчитывается более 4500 моногенных заболеваний. Наиболее частыми из них являются: муковисцидоз, фенилкетонурия, миопатии Дюшенна-Беккера и ряд других заболеваний. Клинически они проявляются признаками нарушения обмена веществ (метаболизма) в организме.

Хромосомные мутации

Хромосомные мутации являются причинами возникновения хромосомных болезней.

 
 

Хромосомные мутации – это структурные изменения отдельных хромосом, как правило, видимые в световом микроскопе. В хромосомную мутацию вовлекается большое число (от десятков до нескольких сотен) генов, что приводит к изменению нормального диплоидного набора. Несмотря на то, что хромосомные абберации, как правило, не изменяют последовательность ДНК в специфических генах, изменение числа копий генов в геноме приводит к генетическому дисбалансу вследствие недостатка или избытка генетического материала. Различают две большие группы хромосомных мутаций: внутрихромосомные и межхромосомные

 

 

Внутрихромосомные мутации – это абберации в пределах одной хромосомы. К ним относятся:

– делеции (от латинского deletio – уничтожение) – утрата одного из участков хромосомы, внутреннего или терминального. Это может обусловить нарушение эмбриогенеза и формирование множественных аномалий развития (например, делеция в регионе короткого плеча 5-й хромосомы, обозначаемая как 5р-, приводит к недоразвитию гортани, порокам сердца, отставанию умственного развития. Этот симптомокомплекс известен как синдром "кошачьего крика", поскольку у больных детей из-за аномалии гортани плач напоминает кошачье мяуканье);

– инверсии (от латинского inversio – перевертывание). В результате двух точек разрывов хромосомы образовавшийся фрагмент встраивается на прежнее место после поворота на 180о. В результате нарушается только порядок расположения генов;

– дупликации (от латинского duplicatio – удвоение) – удвоение (или умножение) какого-либо участка хромосомы (например, трисомия по короткому плечу 9-й хромосомы обуславливает множественные пороки, включая микроцефалию, задержку физического, психического и интеллектуального развития).

Межхромосомные мутации, или мутации перестройки – обмен фрагментами между негомологичными хромосомами. Такие мутации получили название транслокации (от латинских trans – за, через и locus – место). Это:

– реципрокная транслокация – две хромосомы обмениваются своими фрагментами;

– нереципрокная транслокация – фрагмент одной хромосомы транспортируется на другую;

– "центрическое" слияние (робертсоновская транслокация) – соединение двух акроцентрических хромосом в районе их центромер с потерей коротких плеч.

При поперечном разрыве хроматид через центромеры "сестринские" хроматиды становятся "зеркальными" плечами двух разных хромосом, содержащих одинаковые наборы генов. Такие хромосомы называются изохромосомами.

Транслокации и инверсии, являющиеся сбалансированными хромосомными перестройками, не имеют фенотипических проявлений, но в результате сегрегации перестроенных хромосом в мейозе могут образовать несбалансированные гаметы, что повлечет за собой возникновение потомства с хромосомными аномалиями.

Геномные мутации

Геномные мутации, как и хромосомные, являются причинами возникновения хромосомных болезней.

К геномным мутациям относятся анеуплоидии и изменения плоидности структурно неизмененных хромосом. Геномные мутации выявляются цитогенетическими методами.

Анеуплоидия – изменение (уменьшение – моносомия, увеличение – трисомия) числа хромосом в диплоидном наборе, некратное гаплоидному (2n+1, 2n-1 и т.д.).

Полиплоидия – увеличение числа наборов хромосом, кратное гаплоидному (3n, 4n, 5n и т.д.).

У человека полиплоидия, а также большинство анеуплоидий являются летальными мутациями.

К наиболее частым геномным мутациям относятся:

– трисомия – наличие трех гомологичных хромосом в кариотипе (например, по 21-й паре при болезни Дауна, по 18-й паре при синдроме Эдвардса, по 13-й паре при синдроме Патау; по половым хромосомам: XXX, XXY, XYY);

– моносомия – наличие только одной из двух гомологических хромосом. При моносомии по любой из аутосом нормальное развитие эмбриона не возможно. Единственная моносомия у человека, совместимая с жизнью – моносомия по Х-хромосоме – приводит к синдрому Шерешевского-Тернера (45,Х).

Причиной, приводящей к анеуплодии, является нерасхождение хромосом во время клеточного деления при образовании половых клеток или утрата хромосом в результате анафазного отставания, когда во время движения к полюсу одна из гомологичных хромосом может отстать от других негомологичных хромосом. Термин нерасхождение означает отсутствие разделения хромосом или хроматид в мейозе или митозе.

Нерасхождение хромосом наиболее часто наблюдается во время мейоза. Хромосомы, которые в норме должны делиться во время мейоза, остаются соединенными вместе и в анафазе отходят к одному полюсу клетки, таким образом, возникают две гаметы, одна из которых имеет добавочную хромосому, а другая – не имеет этой хромосомы. При оплодотворении гаметы с нормальным набором хромосом гаметой с лишней хромосомой возникает трисомия (т.е. в клетке присутствует три гомологичные хромосомы), при оплодотворении гаметой без одной хромосомы возникает зигота с моносомией. Если моносомная зигота образуется по какой-либо аутосомной хромосоме, то развитие организма прекращается на самых ранних стадиях развития.

 

Антимутационные механизмы: речь идет об особенностях функционирования ДНК — полимеразы, отбирающей требуемые нуклеотиды в процессе репликации ДНК, а также осуществляющей самокоррекцию при образовании новой цепи ДНК наряду с редактирующей экдонуклеазой.

Фактором защиты против неблагоприятных последствий генных мутаций служит парность хромосом в диплоидном кариотипе соматических клеток эукариот. Парность аллейных генов препятствует фенотипическому проявлению мутаций, если они имеют рецессивный характер.

В снижение вредных последствий генных мутаций вносит явление экстракопирование генов, кодирующих жизненно важные макромолекулы. Пример, гены рРНК, тРНК, гистоновых белков, без которых жизнедеятельность любой клетки невозможна.

Перечисленные механизмы способствуют сохранению отобранных в ходе эволюции генов и одновременно накоплению в генофонде популяции различных ей аллелей, формируя резерв наследственной изменчивости.

34) Геномные мутации, причины и механизмы их возникновения. Классификация геномных мутаций. Значение геномных мутаций.

Геномные мутации

комментарии отсутствуют

Мутации, связанные с изменением числа хромосом, называют геномными. Совокупность взаимодействующих генов в гаплоидном наборе хромосом клеток
организма называют геномом. Геномными мутациями обусловлено появление полиплоидных организмов, когда происходит нарушение кратности полного
гаплоидного набора хромосом (триплоидии, тетраплоидии, когда каждая клетка организма содержит не два, а три, четыре гаплоидных набора) или изменение в
одной из пар хромосом в сторону утраты гомолога (моносомия) или приобретения дополнительного (трисомия, тетрасомия). В основе численных хромосомных
изменений лежат нарушения в расхождении хромосом при клеточном делении. Нерасхождение хромосом может возникнуть во время гаметогенеза, или при первых делениях оплодотворенной яйцеклетки.

К геномным мутациям относят гаплоидию, полиплоидию, анеуплоидию (гетероплоидию). Гаплоидные организмы имеют по одной хромосоме каждой
гомологичной пары, все рецессивные гены проявляются в фенотипе. Жизнеспособность организмов снижена. У человека описаны триплоидные и тетраплоидные организмы. Частота их возникновения низка. Они обнаруживаются среди спонтанно абортированных эмбрионов или плодов и у мертворожденных. Продолжительность жизни новорожденных с такими нарушениями — несколько дней. Геномные мутации по отдельным хромосомам многочисленны. Моносомии могут быть по Х — хромосоме, что приводит к развитию синдрома Шерешевского-Тернера (45 хромосом = 44 аутосомы + ХО).

Для женщин с синдромом Шерешевского-Тернера характерны маленький рост, короткая шея, воронкообразная грудина, бесплодие вследствие недоразвития
яичников, слабое развитие половых признаков. 50% больных умственно отсталы или нормальны. Могут быть пороки развития внутренних органов. Дети с синдромом Шерешевского-Тернера рождаются с частотой 0,7 на 1000 новорожденных девочек.

Диагноз ставят при исследовании полового хроматина и на основании результатов цитогенетического анализа. Аутосомные моносомии среди живорожденных очень редки. Это мозаичные организмы с нормальными клетками. Моносомия касается аутосом 21 и 22. Полные трисомии описаны по большому числу хромосом: 8, 9, 13, 14, 18, 21, 22 и Х. Число Х-хромосом у человека может доходить до 5 с сохранением жизнеспособности.

Изменение числа хромосом вызвано нарушением распределения их по дочерним клеткам во время 1-го или 2-го мейотического деления в гаметогенезе или
при первых дроблениях оплодотворенной яйцеклетки.

Нарушения возникают:
• при расхождении во время анафазы редуплицированной хромосомы, в
результате чего удвоенная хромосома попадает только в одну дочернюю клетку;
• при нарушении конъюгации гомологичных хромосом, что может нарушить
правильность расхождения гомологов по дочерним клеткам;
• при отставании хромосом в анафазе при их расхождении в дочерние клетки,
что может привести к утрате хромосомы

Геномные мутации характеризуются изменением числа хромосом. У человека известны полиплоидия (в том числе тетраплоидия и триплоидия) и анеуплоидия.

Полиплоидия — увеличение числа наборов хромосом, кратное гаплоидному (Зn, 4n, 5n и т.д.). Причины: двойное оплодотворение и отсутствие первого мейотического деления. У человека полиплоидия, а также большинство анеуплоидий приводят к формированию леталей.

Анеуплоидия — изменение (уменьшение — моносомия, увеличение — трисомия) числа хромосом в диплоидном наборе, т.е. не кратное гаплоидному (2n+1, 2n-1 и т.д.). Механизмы возникновения: нерасхождение хромосом (хромосомы в анафазе отходят к одному полюсу, при этом на каждую гамету с одной лишней хромосомой приходится другая — без одной хромосомы) и «анафазное отставание» (в анафазе одна из передвигаемых хромосом отстаёт от всех других).

Трисомия — наличие трёх гомологичных хромосом в кариотипе (например, по 21-й паре, что приводит к развитию синдрома Дауна; по 18-й паре — синдрома Эдвардса; по 13-й паре — синдрома Патау).

Моносомия — наличие только одной из двух гомологичных хромосом. При моносомии по любой из аутосом нормальное развитие эмбриона невозможно. Единственная совместимая с жизнью моносомия у человека — по хромосоме X — приводит к развитию синдрома Шерешевского—Тернера (45,Х0).

 

35)Хромосомные мутации, их классификация. Причины и механизмы возникновения хромосомных мутаций. Роль хромосомных мутаций в развитии патологических состояний человека и эволюционном процессе.

Хромосомные мутации

     

Различают два основных типа хромосомных мутаций: численные хромосомные мутации и структурные хромосомные мутации. В свою очередь, численные мутации делятся на анэуплоидии, когда мутации выражаются в утрате или появлении дополнительной одной либо нескольких хромосом, и полиплоидии, когда увеличивается число гаплоидных наборов хромосом. Потерю одной из хромосом называют моносомией, а возникновение дополнительной хромосомы у любой пары хромосом — трисомией. Структурные хромосомные мутации представлены транслокациями, делециями, инсерциями, инверсиями, кольцами и изохромосомами.

Численные хромосомные мутации

Трисомии. Трисомией называют появление в кариотипе дополнительной хромосомы. Самым известным примером трисомии является болезнь Дауна, которую часто называют трисомией по хромосоме 21. Результатом трисомии по хромосоме 13 является синдром Патау, а по хромосоме 18 — синдром Эдвардса. Все названные трисомии — аутосомные. Другие трисомии по аутосомам нежизнеспособны, погибают внутриутробно и, по-видимому, теряются в виде спонтанных абортов. Жизнеспособными являются индивидуумы с дополнительными половыми хромосомами. Более того, клинические проявления дополнительных хромосом X или Y могут быть весьма незначительными.

Обычно трисомии возникают из-за нарушения расхождения гомологичных хромосом в анафазе мейоза I. В результате в одну дочернюю клетку попадают обе гомологичные хромосомы, а во вторую дочернюю клетку не попадает ни одна из хромосом бивалента. Иногда, однако, трисомия может быть результатом нарушения расхождения сестринских хроматид в мейозе II. В этом случае в одну гамету попадают две совершенно одинаковые хромосомы, что в случае ее оплодотворения нормальным спермием даст трисомную зиготу. Этот тип хромосомных мутаций, ведущих к трисомии, называют нерасхождением хромосом. Аутосомные трисомии возникают из-за нерасхождения хромосом, наблюдающегося преимущественно в оогенезе, но и в сперматогенезе нерасхождение аутосом также может быть. Нерасхождение хромосом может происходить и на ранних стадиях дробления оплодотворенной яйцеклетки. В этом случае в организме присутствует клон мутантных клеток, который может захватывать большую или меньшую часть органов и тканей и иногда давать клинические проявления, сходные с теми, которые наблюдают при обычной трисомии.

Причины нерасхождения хромосом остаются неясными. Известный факт связи между нерасхождением хромосом (особенно хромосомы 21) и возрастом матери до сих пор не имеет однозначной интерпретации.

Моносомии. Отсутствие любой аутосомы является в абсолютном большинстве случаев несовместимым с нормальным развитием и приводит к ранним спонтанным абортам. Очень редкое исключение — моносомия по хромосоме 21. Моносомия может быть результатом нерасхождения хромосом или потери хромосомы во время ее движения к полюсу клетки в анафазе.

Анеуплоидия по половым хромосомам. Моносомия по половым хромосомам приводит к образованию организма с кариотипом ХО, клиническим проявлением которого служит синдром Тернера. В 80% случаев моносомия по хромосоме X является результатом нарушения мейоза у отца (нерасхождение хромосом X и Y). Большинство ХО-зигот погибают внутриутробно.

Трисомия по половым хромосомам может быть трех типов — с кариотипом 47,XXY, 47,XXX и 47,XYY. Трисомия 47,XXY известна как синдром Клайнфелтера. Примерно в 50% случаев причиной синдрома является нерасхождение хромосом X в оогенезе, другие 50% случаев объясняются нерасхождением хромосом X и Y сперматогенеза. Абортируется около 50% эмбрионов с таким кариотипом. Трисомия 47,XXX является в абсолютном большинстве случаев результатом нерасхождения хромосом в гаметогенезе матери. Напротив, тримосия 47,XYY происходит в результате нарушения мейоза в гаметогенезе отца. Это нарушение может произойти только в мейозе II вследствие нерасхождения хромосом Y. Трисомии 47,XXX и 47,XYY встречаются с частотой 1: 1000 среди женщин и мужчин соответственно, они проявляются относительно небольшими фенотипическими изменениями и обычно обнаруживаются в виде случайных находок.

Полиплоидия. Полиплоидные клетки содержат утроенный или учетверенный гаплоидный набор хромосом. У человека триплоидия обнаруживается иногда у спонтанных абортусов, известно также несколько случаев живорождений, но больные погибали в течение 1-го месяца жизни. Триплоидия может быть обусловлена нарушением мейотического расхождения всего набора хромосом в мейозе женских или мужских половых клеток. В результате либо яйцеклетка, либо сперматозоид оказываются диплоидными. В качестве механизма триплоидии рассматривают также возможность оплодотворения яйцеклеток двумя сперматозоидами. В том случае, когда триплоидия обусловлена отцовским диплоидным набором хромосом, возникает пузырное перерождение плаценты, так называемый пузырный занос.

Структурные хромосомные мутации

Структурные мутации хромосом могут возникать только в результате разрыва хромосом с последующим воссоединением, сопровождающимся нарушением исходной конфигурации хромосом. Такие мутации могут быть сбалансированными или несбалансированными. При сбалансированных хромосомных мутациях нет утраты или избытка генетического материала, поэтому они не имеют фенотипических проявлений, кроме тех случаев, когда в результате разрыва хромосомы в месте разрыва оказывается функционально важный ген. В то же время у носителей сбалансированных хромосомных мутаций могут образовываться несбалансированные по хромосомному набору гаметы, и, как следствие этого, у плода, возникшего от оплодотворения такой гаметой, хромосомный набор окажется также несбалансированным. При несбалансированном хромосомном наборе у плода развиваются тяжелые клинические проявления патологии, как правило, в виде комплекса врожденных пороков развития.

Делеции. Делеция означает потерю участка хромосомы. Терминальные делеции возникают, когда в результате одного разрыва в хромосоме сама хромосома укорачивается, а фрагмент обычно теряется при следующем делении клетки. Остальные делеции, которые называют интерстициальными, возникают в результате двух разрывов в хромосоме. Делеция участка хромосомы обусловливает моносомию по этому участку, которая, как правило, оказывается летальной. Считается, что делеция более 2% хромосомного материала от гаплоидного набора будет летальной. В то же время некоторые делеционные синдромы совместимы с жизнью. К ним относятся синдром Вольфа— Хиршхорна и синдром «кошачьего крика».

Дупликации. Дупликация — удвоение участка ДНК, также может возникнуть дупликация части хромосомного материала, вовлеченного в транслокацию. Микродупликации могут также быть результатом неравного кроссинговера в гомологичных хромосомах. Обычно дупликации не приводят к появлению столь выраженных аномалий развития, как делеции.

Транслокации. Транслокациями называют перенос генетического материала с одной хромосомы на другую. Если разрывы возникают одновременно в двух хромосомах и последние обмениваются образовавшимися свободными сегментами, то такие транслокации называют реципрокными. В этом случае кариотип остается представленным 46 хромосомами, а транслокация может быть выявлена только при детальном анализе хромосом. Реципрокные транслокации обычно не сопровождаются фенотипическими проявлениями. Реципрокные транслокации приводят к образованию несбалансированных гамет, когда они проходят мейоз. Обычно реализуются следующие две возможности: в одну гамету попадают две нормальные, а в другую — две транслоцированные (такой тип расхождения называется альтернативным) хромосомы, и в обе гаметы попадают одна нормальная и одна транслоцированная хромосома. Во втором случае возможны две комбинации из нормальной и транслоцированных хромосом. Теоретически все 4 типа расхождения должны реализоваться с равной вероятностью.

Особый вид реципрокных транслокаций представляют собой так называемые робертсоновские транслокации. В этом случае разрывы в двух акроцентрических хромосомах локализуются в области центромер или в непосредственной близости от них. Длинные плечи хромосом сливаются, а короткие теряются. Поскольку короткие плечи акроцентрических хромосом содержат гены рРНК, то их потеря никак не проявляется, так как множественные копии этих генов содержатся также в других акроцентрических хромосомах. Поэтому робертсоновская транслокация функционально является сбалансированной. В кариотипе число хромосом уменьшается до 45. Как и при реципрокных транслокациях, риск образования несбалансированных гамет связан с тем, как протекает мейоз у носителей робертсоновской транслокации.

Возможно образование 6 типов гамет в результате различных способов расхождения хромосом, вовлеченных в робертсоновскую транслокацию:

1) гаметы с нормальными хромосомами;

2) комплементарные им гаметы с робертсоновской транслокацией (оба типа гамет сбалансированные);

3) гаметы, несущие одну нормальную и транслоцированную хромосому;

4) гаметы, несущие вторую нормальную и транслоцированную хромосому;

5) гаметы, несущие только одну нормальную хромосому;

6) гаметы, несущие только вторую нормальную хромосому.

В том случае, когда робертсоновская транслокация является результатом слияния длинных плеч хромосом 21, все гаметы будут несбалансированными. В семье, в которой один из родителей является носителем такой транслокации, все дети будут с болезнью Дауна.

Инсерции. Когда сегмент одной хромосомы переносится и вставляется в другую хромосому, такую перестройку называют инсерцией. Для того чтобы произошла инсерция, необходимо не менее 3 разрывов хромосом. Поскольку в случае возникновения инсерции не теряется и не добавляется новый генетический материал, такую перестройку считают сбалансированной. Однако у носителей такой инсерции 50% гамет окажутся несбалансированными, поскольку они будут нести хромосому либо с делецией, либо с инсерцией. Вследствие этого будут образовываться зиготы с частичной моносомией или частичной трисомией.

Инверсии. Инверсией называют хромосомную мутацию, когда после двух разрывов в одной хромосоме сегмент хромосомы, расположенный между разрывами, поворачивается на 180° и занимает инвертированное положение. Если в инвертированный сегмент попадает центромера, то такую инверсию называют перицентрической, а если инверсия сегмента хромосомы происходит в пределах одного плеча — парацентрической. При инверсии не происходит потери генетического материала, кроме тех случаев, когда разрыв хромосомы может затронуть функционально важный ген. Поэтому носители обоих типов инверсий не имеют, как правило, каких-либо патологических симптомов. Более того, некоторые инверсии, например перицентрическая инверсия в хромосоме 9, встречаются как нормальный признак с достаточно высокой частотой в некоторых этнических группах. Как и при других сбалансированных перестройках, инверсии в мейозе могут приводить к образованию несбалансированных гамет.

Изохромосомы. Изохромосомы возникают в тех случаях, когда центромера делится не продольно, а поперечно. В результате одно из плеч теряется, а второе удваивается. Чаще всего выявляется изохромосома, составленная из длинных плеч хромосомы X. В этом случае у индивидуума, носителя такой изохромосомы X, обнаруживают проявления синдрома Шерешевского—Тернера.

Кольцевые хромосомы. Этот тип хромосомной мутации возникает в том случае, когда разрывы наблюдаются в обоих плечах какой-то хромосомы. Ацентрические фрагменты при этом теряются, а центральная часть хромосомы замыкается в кольцо. Если такая кольцевая хромосома образуется из аутосомы, то из-за отсутствия значительной доли генетического материала этой хромосомы гамета и зигота оказываются несбалансированными, что должно привести к ранней потере зародыша с кольцевой хромосомой. Если все-таки зародыш образуется, то кольцевая хромосома имеет тенденцию теряться во время митотическихделений клеток. Как следствие, возникает мозаицизм по наличию в клетках кольцевой хромосомы.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...