Роль хромосомных и геномных мутаций в эволюции
Все перечисленные выше характеристики верны для всех типов мутаций – генных, хромосомных и геномных. Однако, такие геномные и хромосомные мутации как полиплоидия (кратное увеличение количества хромосом) и дупликации (удвоения определенных участков хромосом) играют особую роль в эволюции. Это связано с тем, что они увеличивают количество генетического материала и тем самым открывают возможность возникновения новых генов с новыми свойствами. Расшифровка генома человека и других организмов показала, что многие гены и участки хромосом представлены в нескольких копиях. К ним относятся множество генов, отвечающих за синтез рибосомной РНК, гистонов (белков, участвующих в упаковке ДНК в хромосомах) и многих других. Таких генов нужно много для того, чтобы обеспечить высокий уровень синтеза, контролируемых ими продуктов. Следует ли из этого, что множественные копии этих генов возникли для этого? Конечно же, нет. Удвоение всего генома или его отдельных участков происходило случайно. При этом удваивались не только эти гены, но и многие другие. Естественный отбор, однако, «поступал» с этим лишними копиями по-разному. Некоторые копии оказались полезными, и естественный отбор поддерживал их в популяциях. Другие оказались вредными, поскольку «больше - не всегда лучше». В этом случае отбор или отбраковывал носителей таких копий, или способствовал размножению таких особой, у которых излишние копии генов терялись в результате других хромосомных мутаций – делеций. Были, наконец, и нейтральные копии, присутствие которых никак не сказывалось на приспособленности их носителей. Филогенетическое древо глобиновых генов. Ген глобина в ходе эволюции несколько раз дуплицировался (отмечено стрелками). Его добавочные копии затем приобретали новые свойства и функции. Из гена бета-глобина общего предка возникли гены гамма-, дельта-, эпсилон-глобинов – белков, которые выполняют иные функции, чем бета-глобин.
Эти лишние копии становились резервом эволюции. Мутации в таких «резервных генах» не так строго отбрасывались отбором, как мутации в основных, уникальных генах. Резервным генам было «позволено» меняться в более широких пределах. Со временем они могли приобретать новые функции и становиться все более и более уникальными. Ярким примером последствий такого процесса является многочисленное и разнообразное семейство генов глобинов млекопитающих. Анализ последовательности нуклеотидов в этих генах показывается, что все они произошли в результате серии последовательных удвоений одного-единственного гена. За каждым удвоением следовало накопление случайных мутаций и постепенное изменение их функций, синтезируемых ими белков. Когда мы сравниваем кариотипы разных видов млекопитающих, мы обнаруживаем, что в ходе эволюции этих видов происходили и закреплялись и другие хромосомные мутации, такие как транслокации и инверсии. Кариотип человека отличается от шимпанзе и других антропоидов одной транслокацией и несколькими инверсиями. За десятки миллионов лет независимой эволюции в кариотипах человека и землеройки возникли и закрепились десятки различных транслокаций и инверсий. Эти хромосомные перестройки не могли бы закрепиться, если бы они резко нарушали жизнеспособность или плодовитость их носителей. В результате транслокаций и инверсий меняется взаимное расположение генов и, следовательно, характер их взаимодействия. В настоящее время хорошо известно, какую важную роль в проявлении генов играют их регуляторные элементы. Эти элементы, как правило, находятся в тех же хромосомах, что и контролируемые гены, но часто на большом расстоянии от них. Отрыв гена от его регуляторного элемента, обусловленный инверсией или транслокаций, или соединение этого гена с чужим регуляторным элементом может приводить к значительным изменениям в функции гена – времени его проявления в развитии, типе клеток, в которых этот ген активен, в количестве синтезируемого белка. К таким же последствиям может приводить и перемещение мобильных генетических элементов, которые могут захватывать и переносить с места на место регуляторные элементы.
В геноме обнаружены участки, где довольно часто происходят разрывы хромосом, ведущие к образованию хромосомных перестроек. Найдены и участки преимущественной локализации мобильных генетических элементов. Интересно, что во многих случаях это одни и те же участки. Таким образом, мы можем говорить о неслучайном распределении этих участков по геному. Однако, и как все остальные мутации, хромосомные перестройки и перемещения мобильных элементов случайны. Они случайно меняют функции генов, находящихся вблизи точек разрывов, они случайно распределяют гены по геному. Они приводят к тому, что возникает множество новых «коалиций» генов, а приспособительная ценность этих «коалиций» оценивается отбором. 36)Генные мутации и их классификация. Причины и механизмы возникновения, частота встречаемости, биологические последствия генных мутаций. Генные (точковые) мутации - это изменения числа и/или последовательности нуклеотидов в структуре ДНК (вставки, выпадения, перемещения, замещения нуклеотидов) в пределах отдельных генов, приводящие к изменению количества или качества соответствующих белковых продуктов. Замены оснований приводят к появлению трех типов мутантных кодонов: с измененным смыслом (миссенс-мутации), с неизмененным смыслом (нейтральные мутации) и бессмысленных, или терминирующих кодонов (нонсенс-мутации). В результате миссенс-мутании в кодируемом данным геном полипептиде одна аминокислота замещается на другую, поэтому фенотипическое проявление мутации зависит от функциональной значимости затронутого домена. Так замены аминокислот в активных центрах белков могут сопровождаться полной потерей их функциональной активности. К примеру, миссенс-мутация в 553-м кодоне гена FAC, приводящая к замене лейцина на пролин, делает продукт этого гена неспособным комплементировать функциональный дефект в клетках больных анемией Фанкони.
Не всякая замена аминокислоты отразится на функциональной активности белка, вследствие чего происшедшая мутация может остаться не вьшвленной. Этим объясняется факт отмечаемого несовпадения частоты мутаций в определенном гене и встречаемости мутантов по нему. Кроме того, в силу вырожденности генетического кода, не всякая замена основания приведет к миссенс-мутации, возможно, она окажется нейтральной. В результате нонсенс мутации кодон, определяющий какую-либо аминокислоту, превращается в один из стоп-кодонов, не транслирующихся на рибосомах (UAA UAG, UGA). Появление такого кодона не в конце структурного гена, а внутри него, приводит к преждевременной терминации трансляции и обрыву полипептидной цепи. Нонсенс-мутации обладают наибольшим повреждающим действием, так как образующиеся при преждевременной терминации трансляции белки не способны к модификации, часто не защищены от действия протеолитических ферментов и быстро деградируют. Вставки, перемещения или выпадения отдельных оснований или их коротких последовательностей в пределах гена вызывают сдвиг рамки считывания. Природа таких мутаций была изучена при анализе аминокислотной последовательности белков фага Т4, кодируемьгх геном дикого типа е+ и тремя разными мутантными генами е, содержащими взаимно супрессирующие фреймшифт (сдвигающие рамку считывания)-мутации. Оказалось, что некоторые единичные мутации являются следствием одновременных изменений нескольких соседних нуклеотидов. И, скорее всего, единичная мутация со сдвигом рамки возникает в результате вставки двух соседних нуклеотидов, а не одного. При возникновении мутаций со сдвигом рамки считывания меняются все триплеты ниже сайта дупликации или делеиии по ходу считывания, при этом повышается вероятность возникновения стоп-кодонов и, соответственно, терминации трансляции.
С точки зрения структурно-функциональной организации генов, происходящие внутри них замены, вставки, выпадения, перемещения нуклеотидов можно объединить в следующие группы: 1) мутации в регуляторных областях генов Таким образом, мутации в регуляторных 5' и 3'-нетранслируемых областях генов вызывают количественные изменения соответствующих продуктов и проявляются фенотипически (клинически) в зависимости от порогового уровня белков, при котором их функция еще сохраняется; 2) мутации в кодирующих областях генов Замены нуклеотидов в кодирующих областях генов, не сопровождающиеся заменами аминокислот в силу вырожденности генетического кода, приводят к нейтральным мутациям, не оказывающим заметного влияния ни на функцию соответствующего белка, ни на его структуру. Генные мутации Генные мутации - это изменения структуры отдельных генов путём вставки, выпадения, замены или изменения пары нуклеотидов. Наименьший участок молекулы ДНК, изменение которого приводит к мутации, называется мутоном (название «мутон» предложено Бензером в 1957 году). Мутон представляет собой пару нуклеотидов.
Образование генной мутации происходит в два этапа. На первом этапе изменение затрагивает лишь одну цепь молекулы ДНК (потенциальная мутация). С изменением гомологичного участка (например, комплементарного нуклеотида) во второй цепи возникает истинная мутация. Она может возникнуть только в ходе ближайшего цикла редупликации ДНК, например, в ходе интерфазы клеточного цикла. Генные мутации бывают спонтанными (самопроизвольными) -происходящими вне прямой связи с физическим или химическим факторами внешней среды и индуцированными (искусственно вызванными воздействием на организм факторов известной природы). Спонтанные мутации возникают, например, как ошибки при воспроизведении генетического материала (редупликация ДНК, синтез иРНК). Их частота выше у организмов с коротким жизненным циклом, и, наоборот, ниже у организмов с длинным жизненным циклом. Фактор, индуцирующий мутации, называется мутагеном. К физическим мутагенам относятся все виды ионизирующих излучений (гамма- и рентгеновские лучи, протоны, нейтроны и др.), ультрафиолетовое излучение, высокие и низкие температуры. Химическими мутагенами являются ал кодирующие соединения, алкалоиды, некоторые биополимеры (чужеродные ДНК и РНК), вещества, используемые в сельском хозяйстве (гидразид малеиновой кислоты), в медицине (нитрофураны), в различных производствах (формальдегид, гидроксиламин, бисульфит натрия и др.). К биологическим мутагенам относятся вирусы, бактерии, простейшие, гельминты, а также продукты их жизнедеятельности. Наряду с указанными выделяют ещё супермутагены, повышающие частоту мутаций в сотни и более раз (нитрозопроизводные мочевины и др.). По влиянию на жизнедеятельность организма мутации подразделяют на летальные, полулетальные, нейтральные и благоприятные. Большинство мутаций либо вредны для организма, либо вызывают его гибель. Различают летальные мутации, обладатели которых погибают, как правило, в эмбриональный период и полулетальные (семилетальные) мутации, вызывающие снижение жизнеспособности и гибель организма до наступления репродуктивного периода. Очень редко генные мутации не изменяют или улучшают те или иные свойства организма. Первые называют нейтральными, вторые - благоприятными мутациями. Они обычно поставляют материал для эволюционного процесса или используются в селекции. Большая часть мутаций является по своей природе рецессивными. Не проявляясь в фенотипе, они не устраняются в ходе эволюции и накапливаются в генофондах видов в большом количестве. Реже происходят доминантные мутации, проявляющиеся уже в первом поколении. Неблагоприятные (летальные и полулетальные) мутации у человека являются причиной самых разнообразных генных болезней и наследственных аномалий. Примерно у 4% новорождённых проявляются симптомы наследственных аномалий, являющихся результатом самых разнообразных мутаций. Патологические состояния организма, обусловленные генными мутациями, названы генными болезнями. У человека известно несколько сот генных заболеваний. Некоторые из наследственных аномалий контролируются одной, другие - несколькими парами генов. В проявлении наследственной патологии существенное значение могут иметь гены-модификаторы, комплементарные гены, среда с её климатическими, физическими, биологическими и социальными факторами. Среди генных болезней особенно часто встречаются наследственные нарушения процессов обмена веществ. Так, известна мутация, которая ве-Феиилашаиив дёт к появлению рецессивного гена, блокирующего образование фермента, способствующего превращению аминокислоты фенилаланина в тирозин. Вместо этого фенилаланин превращается в фенилпировинограднуто кислоту, которая накапливается в крови (рис.80). В результате развивается фенилкетонурия, сопровождающаяся определённой формой умственной отсталости. Однако раннее выявление болезни (методом выявления фенилпиро-виноградной кислоты в моче путём прикладывания реактивного карандаша к пелёнкам новорождённого) позволяет заблаговременно назначить специальную диету и, тем самым, предотвратить у детей патологические изменения в нервной и других системах организма. Мутация гена, контролирующего синтез фермента галактазы (без которого невозможно усвоение молочного сахара - галактозы) приводит к развитию генного заболевания - галактоземии. При этом галактоза появляется в крови, ведёт к поражению печени и других органов, вызывает психические нарушения и иные симптомы тяжелого наследственного заболевания. Если же это заболевание удаётся дианостировать сразу после рождения ребёнка и исключить из диеты новорождённого молоко, то можно полностью предотвратить тяжёлые клинические проявления. Достаточно распространённым является такое генное заболевание как серповидноклеточная анемия. Оно контролируется доминантным аллель-ным геном. Результат мутации заключается в том, что в молекуле Р-полипептида (146 аминокислотных остатков) остаток молекулы глутаминовой кислоты заменяется на остаток молекулы валина. Обладатели гена в гомозиготном состоянии отличаются аномальным строением гемоглобина, его меньшей растворимостью и, в связи с этим, выпадением в осадок. Последнее ведёт к деформации и разрушению эритроцитов, следствием чего становится выделение гемоглобина с мочой (гемоглобинурия). Гомозиготы по гену серповидноклеточной анемии погибают в возрасте от 3 месяцев до 2-х лет. В бассейне реки Конго ген, вызьшающий серповидноклеточную анемию, встречается у 28,6% населения. Широко распространён этот ген и в других странах Африки. Находясь в гетерозиготном состоянии, он вызывает серповидность эритроцитов, однако больные серповидноклеточной анемией не заболевают малярией и отличаются большей выживаемостью в очагах тропической малярии. В качестве примера нейтральных мутаций можно указать генные мутации одного и того же локуса, приводящие к появлению серии аллельных генов. Так, у мухи-дрозофилы, имеющей в норме красные глаза, появились мутанты с белыми и абрикосовыми глазами, глазами цвета слоновой кости и т.д. Типичной нейтральной генной мутацией является альбинизм у животных. По месту возникновения мутации подразделяются на генеративные, происходящие в половых клетках и передающиеся последующим поколениям, и соматические, которые происходят в любых других (неполовых) клетках организма и наследуются только непосредственными потомками этой клетки или всем клоном при вегетативном размножении. Чем в более ранней стадии развития возникла соматическая мутация, тем большим окажется участок ткани, несущий данную мутацию. Обладатели соматических мутаций называются мозаиками (например, люди, у которых цвет одного глаза отличается от цвета другого). Соматические мутации, влияющие на метаболические процессы, являются одной из причин старения организма и развития злокачественных опухолей. Соматические мутации, вероятно, возникают часто и остаются незамеченными, но в некоторых случаях могут образоваться клетки с повышенной скоростью роста и деления. Эти клетки могут дать начало опухолям - либо доброкачественным, которые не оказывают особого влияния на весь организм, либо злокачественным, ведущим к раковым заболеваниям. Известно, что мутирование происходит в самых разнообразных направлениях и его результат непредсказуем. Не случайно Ч. Дарвин назвал этот вид изменчивости «неопределённой». Однако это многообразие направлений мутирования подчиняется закономерности, обнаруженной НИ. Вавиловым (1920) и обобщённой им в виде закона гомологических рядов в наследственной изменчивости: «Виды и роды, генетически близкие, характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть существование параллельных форм у других видов и родов». Например, у мягкой пшеницы, твёрдой пшеницы и ячменя известны формы с длинными остями, короткими остями, безостные, а также формы со вздутиями вместо остей. Средняя частота мутирования у живых организмов составляет 10-4-10"6 мутации на 1 локус за 1 поколение. Следовательно, в гаплоидном наборе генов человека за поколение может возникать от 1 до 10 новых мутаций. Молекулярные механизмы генных мутаций окончательно не выяснены. Скорее всего, они заключаются в ошибках в ходе внутриклеточных процессов, особенно таких как редупликация и рекомбинация ДНК. Сущность генных мутаций заключаются в основном в: 1) замене нуклеотида (А-Т —* Т-Т); 2) сдвиге рамки считывания наследственной информации в ходе транскрипции из-за вставки или выпадения нуклеотида.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|