Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Основные методы выращивания монокристаллов

В последние годы монокристаллические волокна (кристалловолокна) стали объектом пристального внимания и интенсивного изучения. Это связано с уникальными свойствами волокон. Обычно под волокнами подразумеваются любые материалы вытянутой формы и малого диаметра, порядка м. Таким образом, термин волокно описывает все типы материалов, отвечающих этим требованиям, например нить, проволоку, волос. Кристаллические структуры в форме волокон (кристалловолокна) могут быть выращены из расплавов, растворов и паров.

Первые работы по выращиванию волокон датируются началом прошлого столетия. В 1917 году Чохральский вырастил металлические монокристаллические волокна диаметром 200 мкм путем их вытягивания из расплава. Немного позднее, в 1922 году, с целью изучения процесса вытягивания монокристаллов Гомперц вырастил металлические кристалловолокна через отверстия в слюдяном диске, плавающем на поверхности расплава. Это был "час рождения" методов получения профилированных кристаллов, использующих принцип капиллярной стабилизации мениска, который лежит в основе технологий выращивания волокон и в наши дни.

В результате интенсивных исследований профилированных монокристаллов германия и других материалов (исследования были закончены к началу семидесятых годов прошлого века Степановым, Голем и Пастором), было установлено, что одной из необычных характеристик кристалловолокон является их предельно высокая прочность. Так, например, прочность сапфировых волокон, по данным работ Ла Бель и Млавского превышает 1 ГПа. Это особое свойство кристалловолокон обусловлено совершенством их структуры вследствие их малых размеров, что сводит к минимуму количество дефектов, являющихся причиной низкой прочности материалов крупных размеров. Высокая прочность кристалловолокон делает их перспективными материалами для применения в качестве армирующих элементов.[1]

Широкая полоса пропускания (оптическая прозрачность), высокая температура плавления и химическая стойкость многих кристаллических материалов делают их привлекательными для использования в устройствах передачи энергии, особенно в условиях агрессивных сред. Кристалловолокна прекрасно подходят для обеспечения нелинейных оптических взаимодействий, эффективной оптической генерации, для создания оптических квантовых генераторов второй и высших гармоник, для смешения частот, для электрооптической модуляции. Кристалловолокна, в частности, могут использоваться для изготовления фоторефрактивных голографических запоминающих устройств.[2] На базе волокон возможно создание узкополосных перестраиваемых фильтров с шириной полосы пропускания менее 0,01 нм, благодаря реализуемой в них брегговской дифракции высоких порядков. При использовании кристалловолокон в качестве активных лазерных элементов волоконная конфигурация имеет еще одно важное преимущество: активный элемент в процессе работы имеет сравнительно низкую температуру (что благотворно сказывается на интенсивности оптической генерации) за счет эффективного отвода тепла по волокну. И, наконец, к уникальным качествам кристалловолокон относится то, что сразу после выращивания они готовы к использованию в оптических и других устройствах без дополнительной механической обработки. Последнее существенно минимизирует издержки производства кристалловолокон. [3]

Анализ процесса выращивания волоконных материалов позволил более полно установить и изучить свойства кристалловолокон, необходимые для более детальных исследований особенностей роста кристаллов. Благодаря малому диаметру волокон у них наблюдается либо минимальное количество дислокаций, либо их полное отсутствие. Этот эффект связан с существенным снижением термомеханического напряжения в волокнах. Кроме того, в волокнах обеспечиваются условия для залечивания (подавления) дефектов в процессе роста, что наблюдается, даже если направление вытягивания кристалла немного отклоняется от направления его роста.[4]

Обычно волокна выращивают в режиме управляемой диффузии. Малые зоны плавления ингредиентов и высокие скорости роста обеспечивают эффективный коэффициент распределения компонентов, близкий к единице. В результате это приводит к однородному распределению компонентов вдоль оси роста кристалла. Последнее обстоятельство делает возможным изучение процессов плавления неоднородных многокомпонентных материалов. Впервые подобные исследования были проведены в лаборатории Фукуды. Сегодня они выполняются и в ряде других научных организаций, например в Институте выращивания кристаллов в Берлине. Практическая значимость этих работ заключается в том, что за короткое время при незначительных финансовых затратах путем синтеза небольшого количества того или иного материала на установках для выращивания волокон удается определить кинетику роста, стабильность химического состава и степень совершенства получаемых кристаллов. На основании этих данных исследуемый материал отвергается или рекомендуется в качестве исходного для выращивания из него объемных кристаллов, в частности по методу Чохральского, в промышленных масштабах. Выращивание монокристаллов возможно как с использованием монокристаллических затравок, так и спонтанно. Рост кристаллов на затравках одноименного материала называют гомоэпитаксиальным, на других подходящих по кристаллографическим параметрам поверхностях - гетероэпитаксиальным.

К основным методам отнесем следующие:

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...