Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Классификация нанокластеров металлов по размерам

Число атомов в нанокластере Диаметр, нм Доля атомов на поверхности, % Число внутренних слоев Тип кластера
1 0,24 – 0,34 100 0
2 0,45 – 0,60 100 0
3 – 12 0,55 – 0,80 100 0 Малый
13 – 100 0,8 – 2,0 92 – 63 1 – 3 Средний
102 – 104 2 – 10 63 – 15 4 – 18 Большой
104 – 105 10 – 30 15 – 2 > 18 Гигантский
> 106 > 30 < 2 много Коллоидная частица

 

В химии термин “кластер” употребляется для обозначения группы близко расположенных и тесно связанных друг с другом атомов, молекул, ионов, а иногда и ультрадисперсных частиц.

Впервые это понятие было введено в 1964 году, когда профессор Ф. Коттон предложил называть кластерами химические соединения, в которых атомы металла образуют между собой химическую связь. Как правило, в таких соединениях металлические кластеры металла связаны с лигандами, оказывающими стабилизирующее действие и окружающие металлическое ядро кластера наподобие оболочки. Кластерные соединения металлов с общей формулой MmLn классифицируют на малые (m/n< 1), средние (m/n ~ 1), большие (m/n > 1) и гигантские (m >> n) кластеры. Малые кластеры содержат обычно до 12 атомов металла, средние и большие – до 150, а гигантские (их диаметр достигает 2-10 нм) – свыше 150 атомов.

Хотя термин "кластер" широко стал использоваться сравнительно недавно, само понятие небольшой группы атомов, ионов или молекул является естественным для химии, так как связано с образованием зародышей в процессе кристаллизации или ассоциатов в жидкости. К кластерам относят также наночастицы упорядоченного строения, имеющих заданную упаковку атомов и правильную геометрическую форму

Форма нанокластеров существенно зависит от их размеров, особенно при небольшом числе атомов. Результаты экспериментальных исследований в сочетании с теоретическими расчетами показали, что нанокластеры золота, содержащие 13 и 14 атомов, имеют плоское строение, в случае 16 атомов – трехмерную структуру, а в случае 20 – образуют гранецентрированную кубическую ячейку, напоминающую структуру обычного золота. Казалось бы, при дальнейшем увеличении числа атомов эта структура должна сохраняться. Однако это не так. Частица, состоящая из 24 атомов золота, в газовой фазе имеет необычную вытянутую форму.

Возможные структуры нанокластера Au24. Наиболее устойчивая из них – структура а

Интересно, что нанокластеры присутствуют даже в обычной воде. Они представляют собой агломераты из отдельных молекул воды, соединенных друг с другом водородными связями. Подсчитано, что в насыщенном водяном паре при комнатной температуре и атмосферном давлении на 10 миллионов одиночных молекул воды приходится 10 000 димеров (Н 2О)2, 10 циклических тримеров (Н 2О)3 и один тетрамер (Н 2О)4. В жидкой воде обнаружены и частицы гораздо большей молекулярной массы, образованные из нескольких десятков и даже сотен молекул воды. Некоторые из них существуют в нескольких изомерных модификациях, различающихся формой и порядком соединения отдельных молекул. Особенно много кластеров содержится в воде при низкой температуре, вблизи точки плавления. Такая вода характеризуется особыми свойствами – она имеет большую плотность по сравнению со льдом и лучше усваивается растениями. Это еще один пример того, что свойства вещества определяются не только его качественным или количественным составом, т. е. химической формулой, но и его строением, в том числе и на наноуровне.

Различают два типа наночастиц: частицы упорядоченного строения размером 1-5 нм, содержащие до 1000 атомов (нанокластеры или нанокристаллы), и собственно наночастицы диаметром от 5 до 100 нм, состоящие из 103-106 атомов. Такая классификация верна лишь для изотропных (сферических) частиц. Нитевидные и пластинчатые частицы могут содержать гораздо больше атомов и иметь один или даже два линейных размера, превышающих пороговое значение, но их свойства остаются характерными для вещества в нанокристаллическом состоянии. Соотношение линейных размеров наночастиц позволяет рассматривать их как одно-, двух-, или трехмерные наночастицы. Если наночастица имеет сложную форму и строение, то в качестве характеристического рассматривают не линейный размер в целом, а размер ее структурного элемента. Такие частицы называют

наноструктурами

 

Кластеры и квантоворазмерные эффекты

Термин «кластер» происходит от английского слова cluster –гроздь, рой, скопление. Кластеры занимают промежуточное положение между отдельными молекулами и макротелами. Наличие у нанокластеров уникальных свойств связано с ограниченным числом составляющих их атомов, поскольку масштабные эффекты проявляются тем сильнее, чем ближе размер частиц к атомарному. Поэтому свойства единичного изолированного кластера можно сравнивать как со свойствами отдельных атомов и молекул, так и со свойствами массивного твердого тела. Понятие «изолированный кластер» весьма абстрактно, поскольку практически невозможно получить кластер, не взаимодействующий с окружающей средой.

Существованием энергетически более выгодных «магических» кластеров можно объяснить немонотонную зависимость свойств нанокластеров от их размеров. Формирование ядра молекулярного кластера происходит в соответствии с концепцией плотной упаковки атомов металлов подобно формированию массивного металла. Число атомов металла в плотноупакованном ядре, построен ном в виде правильного 12-вершинного многогранника (кубооктаэдра, икосаэдра или антикубооктаэдра), вычисляют по формуле:

N=1/3 (10n3 + 15n2 + 11n + 3) (1),

где п - число слоев вокруг центрального атома.

                                                                                                                                                                                                                                                                      Таким образом, минимальное плотноупакованное ядро содержит 13 атомов: один центральный атом и 12 атомов из первого слоя. В результате получается набор «магических» чисел N =13, 55, 147, 309, 561, 923, 1415, 2057 и т. д., соответствующих наиболее стабильным ядрам металлических кластеров.

Электроны атомов металлов, составляющих ядро кластера, не делокализованы, в отличие от обобщенных электронов атомов тех же металлов в массивном образце, а формируют дискретные энергетические уровни, отличные от молекулярных орбиталей. При переходе от массивного металла к кластеру, а затем к молекуле наблюдается переход от делокализованных s - и d-электронов, формирующих зону проводимости массивного металла, к неделокализованным электронам, формирующим дискретные энергетические уровни в кластере, и затем к молекулярным орбиталям. Появление дискретных электронных полос в кластерах металлов, размер которых лежит в области 1-4 нм, должно сопровождаться появлением одноэлектронных переходов.

Эффективный способ наблюдения подобных эффектов туннельная микроскопия, которая позволяет получать вольтамперные характеристики при фиксации острия микроскопа на молекулярном кластере. При переходе от кластера к острию туннельного микроскопа электрон преодолевает кулоновский барьер, величина которого равна электростатической энергии ΔE =е2/2С (С - емкость нанокластера, пропорциональная его размеру).

Для кластеров малого размера электростатическая энергия электрона становится больше его кинетической энергии kT, поэтому на вольтамперной кривой U=f(I) появляются ступеньки, отвечающие одно электронному переходу. Таким образом, при уменьшении размера кластера и температуры одноэлектронного перехода нарушается линейная зависимость U=f(I), характерная для массивного металла.

Квантоворазмерные эффекты наблюдались при изучении магнитной восприимчивости и теплоемкости молекулярных кластеров палладия при сверхнизких температурах. Показано, что увеличение размера кластера приводит к росту удельной магнитной восприимчивости, которая при размере частиц ~30 нм становится равной значению для объемного металла. Массивный Pd обладает парамагнетизмом Паули, который обеспечивается электронами с энергией EF вблизи энергии Ферми, поэтому его магнитная восприимчивость практически не зависит от температуры вплоть до температур жидкого гелия. Расчеты показывают, что при переходе от Pd2057 к Pd561, т. е. при уменьшении размера кластера Pd, происходит уменьшение плотности состояний при EF, что вызывает изменение магнитной восприимчивости. Расчет предсказывает, что при понижении температуры (Т→0) должно происходить лишь падение восприимчивости до нуля, либо ее рост до бесконечности для четного и нечетного числа электронов соответственно. Поскольку исследовали кластеры, содержащие нечетное число электронов, то действительно наблюдали рост магнитной восприимчивости: значительный для Pd561 (с максимумом при Т<2 К), слабый для Pd1415 и почти полное отсутствие температурной зависимости для что характерно для массивного Pd.

 

Не менее интересные закономерности наблюдали и при измерении теплоемкости гигантских молекулярных кластеров Pd. Массивные твердые тела характеризуются линейной температурной зависимостью электронной теплоемкости С~Т. Переход от массивного твердого тела к нанокластерам сопровождается появлением квантоворазмерных эффектов, проявляющихся в отклонении зависимости С=f(Т) от линейной по мере уменьшения размера кластера. Так наибольшее отклонение от линейной зависимости наблюдается для Pd561. С учетом поправки на лигандную зависимость (С~ТЗ) для нанокластеров при сверхнизких температурах Т<1К была получена зависимость С~Т2.

 

Известно, что теплоемкость кластера равна С=kT/δ (δ - среднее расстояние между энергетическими уровнями, δ = EF/N, где N число электронов в кластере). Расчеты величин δ/k, проведенные для кластеров Pd561, Pd1415 и Pd2057, а также для коллоидного кластера Pd с размером -15 нм, дали значения 12; 4,5; 3,0; и 0,06°К соответственно. Таким образом, необычная зависимость С~Т2 в области Т<1°К свидетельствует о влиянии квантоворазмерных эффектов.                                                                                                                                                                                                                    Таким образом, рассматривая те или иные явления, необходимо учитывать, что крупные частицы сходны по своему строению с соответствующей макрофазой, тогда как нанообъекты имеют иную структуру. Некоторые масштабные эффекты обнаруживаются уже при d<10 мкм.

Организация наноструктуры из нанокластеров происходит по тем же законам, что и формирование кластеров из атомов.

На рис.5 представлена коллоидная частица золота почти сферической формы, полученная в результате самопроизвольной агрегации нанокристаллов со средним размером 35±5 нм. Однако у кластеров имеется существенное отличие от атомов - у них существует реальная поверхность и реальные межкластерные границы. Из-за большой поверхности нанокластеров, а, следовательно избыточной поверхностной энергии, неизбежны процессы агрегации, направленные в сторону уменьшения энергии Гиббса. Более того, межкластерные взаимодействия создают напряжения, избыточную энергию и избыточное давление на границах кластеров. Поэтому формирование наносистем из нанокластеров сопровождается возникновением большого количества дефектов и напряжений, что приводит к кардинальному изменению свойств наносистемы.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...