Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Упорядоченные нанокластеры

Особенность упорядоченных, или магических, нанокластеров состоит в том, что для них характерны не произвольные, а строго определенные, энергетически наиболее выгодные – так называемые магические числа атомов или молекул. Как следствие, для них характерна немонотонная зависимость их свойств от размеров, т.е. от числа образующих их атомов или молекул.

Повышенная стабильность, присущая магическим кластерам, обусловлена жесткостью их атомной или молекулярной конфигурации, которая удовлетворяет требованиям плотной упаковки и соответствует завершенным геометрическим формам определенных типов. 

Возможно существование различных конфигураций из плотно упакованных атомов, причем, все эти конфигурации представляют собой различные сочетания группировок из трех атомов, в которых атомы расположены на равных расстояниях друг от друга и образуют равносторонний треугольник (рис. 4.1).

 

а   б   в   г
             
             

 

д   е   ж   з

 

Рис. 4.1. Конфигурации нанокластеров из N плотноупакованных атомов [1]

а– тетраэдр (N = 4); б – тригональная бипирамида (N = 5) как сочетание двух тетраэдров;

в– квадратная пирамида (N = 5); г – трипирамида (N = 6), образованная тремя тетраэдрами; д – октаэдр (N = 6); е – пентагональная бипирамида (N = 7); ж – звездообразный тетраэдр (N = 8) образован пятью тетраэдрами – к каждой из 4 граней центрального тетраэдра присоединен еще один тетраэдр;                   з – икосаэдр (N = 13) содержит центральный атом, окруженный 12 атомами, объединенными в 20 равносторонних треугольников, и имеет шесть

осей симметрии 5-гопорядка.

 

Простейшей из таких конфигураций, соответствующей наименьшему нанокластеру, состоящему из четырех атомов, является тетраэдр (рис. 4.1, а), который входит в качестве составной части в другие, более сложные конфигурации. Как видно на рис. 4.1, нанокластеры могут иметь кристаллографическую симметрию, для которой характерны оси симметрии 5-гопорядка. Это принципиально отличает их от кристаллов, структура которых характеризуется наличием кристаллической решетки и может иметь только оси симметрии1-го,2-го,3-го,4-гои6-гопорядков. В частности, наименьший устойчивый нанокластер с одной осью симметрии5-гопорядка содержит семь атомов и имеет форму пентагональной бипирамиды (рис. 4.1, е), следующая устойчивая конфигурация с шестью осями симметрии5-гопорядка – нанокластер в форме икосаэдра из 13 атомов (рис. 4.1, з).

 

Конфигурации из плотноупакованных атомов металла могут иметь место в так называемых лигандных металлических нанокластерах, основу которых составляет металлическое ядро, окруженное оболочкой из лигандов – звеньев молекулярных соединений. В таких нанокластерах свойства поверхностных слоев металлического ядра могут изменяться под влиянием окружающей их лигандной оболочки. Подобное влияние внешнего окружения не имеет места в безлигандных нанокластерах. Среди них наиболее распространены безлигандные металлические и углеродные нанокластеры, для которых также может быть характерна плотная упаковка образующих их атомов.

В лигандных металлических нанокластерах ядра состоят из строго определенного магического числа атомов,

Набор магических чисел, соответствующих наиболее устойчивым ядрам нанокластеров, может быть следующим: N = 13, 55, 147, 309, 561, 923, 561, 1415, 2057, 2869 и т.д. Минимальное по размерам ядро содержит 13 атомов: один атом в центре и 12 – в первом слое.

Устойчивость безлигандных металлических нанокластеров в общем случае обусловлена двумя рядами магических чисел, один из которых связан с геометрическим фактором, т.е. плотной упаковкой атомов (как у лигандных нанокластеров), а другой – с особой электронной структурой нанокластеров, состоящей из двух подсистем: объединенных в ядро положительно заряженных ионов и окружающей их электронов, которые образуют электронные оболочки, подобные электронным оболочкам в атоме. Наиболее устойчивые электронные конфигурации нанокластеров образуются при условии полного заполнения электронных оболочек, что соответствует определенным числам электронов – так называемым “электронным магическим ” числам.

 

Устойчивость углеродных нанокластеров обусловлена магическими числами атомов углерода. Различают малые углеродные нанокластеры (с N < 24) и большие (с N ≥ 24) [2]. Малые нанокластеры проявляют устойчивость при нечетных магических числах (N = 3, 7, 11, 19, 23), среди них наиболее стабильными являются нанокластеры с N = 7, 11, 19, 23. В свою очередь, большие нанокластеры проявляют устойчивость при четных магических числах (N = 24, 28, 32, 36, 50, 60, 70, …), среди них наиболее стабильными являются нанокластеры с N = 60 и 70. Углеродные нанокластеры с N ≥ 24 иначе называют фуллеренами, которые принято обозначать символом СN. Таким образом, наиболее стабильными являются фуллерены С60 и С70. Следует заметить, что фуллерены также рассматриваются как полиморфные модификации углерода (наряду с графитом и алмазом). Это означает, что они представляют собой особые по структуре нанокристаллы. Итак, можно сказать, что на сегодняшний день имеется двойственный подход к определению фуллеренов – как нанокластеров, с одной стороны, и как нанокристаллов, с другой. Более того, довольно часто фуллерены рассматривают как гигантские молекулы углерода, что может быть обусловлено наличием аналогии в структуре фуллеренов и сложных молекул ряда органических соединений, характеризующихся пространственной конфигурацией, а также в характере проявления химических свойств тех и других.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...