Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Подсчет критерия U Манна-Уитни.




Методы математической обработки в психологии

ГЛАВА I. ОСНОВНЫЕ ПОНЯТИЯ, ИСПОЛЬЗУЕМЫЕ В МАТЕМАТИЧЕСКОЙ ОБРАБОТКЕ ПСИХОЛОГИЧЕСКИХ ДАННЫХ

 

Возможности и ограничения параметрических и непараметрических критериев

 

ПАРАМЕТРИЧЕСКИЕ КРИТЕРИИ НЕПАРАМЕТРИЧЕСКИЕ КРИТЕРИИ
1. Позволяют прямо оценить различия в средних, полученных в двух вы­борках (t - критерий Стьюдента). Позволяют оценить лишь средние тенден­ции, например, ответить на вопрос, чаще ли в выборке А встречаются более высо­кие, а в выборке Б - более низкие значе­ния признака (критерии Q, U, φ и др.).
2. Позволяют прямо оценить различия в дисперсиях (критерий Фишера). Позволяют оценить лишь различия в диа­пазонах вариативности признака (критерий φ).
3. Позволяют выявить тенденции изменения признака при переходе от условия к условию (дисперсионный однофакторный анализ), но лишь при условии нормального распреде­ления признака. Позволяют выявить тенденции изменения признака при переходе от условия к усло­вию при любом распределении признака (критерии тенденций L и S).
4. Позволяют оценить взаимодействие двух и более факторов в их влиянии на изменения признака (двухфакторный дисперсионный анализ). Эта возможность отсутствует.
5. Экспериментальные данные должны отвечать двум, а иногда трем, усло­виям: а) значения признака измерены по интервальной шкале; б) распределение признака является нормальным; в) в дисперсионном анализе должно соблюдаться требование равенства дисперсий в ячейках комплекса. Экспериментальные данные могут не от­вечать ни одному из этих условий: а) значения признака могут быть пред­ставлены в любой шкале, начиная от шка­лы наименований; б) распределение признака может быть любым и совпадение его с каким-либо теоретическим законом распределения необязательно и не нуждается в проверке; в) требование равенства дисперсий отсут­ствует.
6. Математические расчеты довольно сложны. Математические расчеты по большей час­ти просты и занимают мало времени (за исключением критериев χ2и λ).
7. Если условия, перечисленные в п.5, выполняются, параметрические кри­терии оказываются несколько более мощными, чем непараметрические. Если условия, перечисленные в п.5, не выполняются, непараметрические критерии оказываются более мощными, чем пара­метрические, так как они менее чувстви­тельны к «засорениям».

 


Классификация задач и методов их решения

 

Задачи Условия Методы
1.Выявление различий в уровне исследуемого признака а) 2 выборки испытуемых Q- критерий Розенбаума; U - критерий Манна-Уитни; φ* - критерий (угловое преобразование Фишера)
б) 3 и более выбо­рок испытуемых S - критерий тенденций Джонкира; Н - критерий Крускала-Уоллиса.
2. Оценка сдвига зна­чений исследуемого признака а) 2 замера на од­ной и той же вы­борке испытуемых Т - критерий Вилкоксона; G - критерий знаков; φ* - критерий (угловое преобразование Фишера).
б) 3 и более заме­ров на одной и той же выборке испы­туемых χл2 - критерий Фридмана; L - критерий тенденций Пейджа.
3. Выявление различий в распределении а) при сопоставлении эмпирического признака распределения с теоретическим χ2 - критерий Пирсона; λ - критерий Колмогорова-Смирнова; m - биномиальный критерий.
б) при сопоставле­нии двух эмпириче­ских распределений χ2 - критерий Пирсона; λ - критерий Колмогорова-Смирнова; φ* - критерий (угловое преобразование Фишера).
4.Выявление степени согласованности изменений а) двух признаков rs - коэффициент ранговой корреляции Спирмена.
б) двух иерархий или профилей rs - коэффициент ранговой корреляции Спирмена.
5. Анализ изменений признака под влия­нием контролируе­мых условий а) под влиянием одного фактора S- критерий тенденций Джонкира; L - критерий тенденций Пейджа; однофакторный дисперсионный анализ Фишера.
б) под влиянием двух факторов одновременно Двухфакторный дисперсионный анализ Фишера.

 


ГЛАВА II. ВЫЯВЛЕНИЕ РАЗЛИЧИЙ В УРОВНЕ ИССЛЕДУЕМОГО ПРИЗНАКА

Принятие решения о выборе метода математической об­работки

Если данные уже получены, то вам предлагается следующий ал­горитм определения задачи и метода.

АЛГОРИТМ 1 Принятие решения о задаче и методе обработки на стадии, когда данные уже получены 1. По первому столбцу Табл. (Классификация задач и методов их решения) определить, какая из задач стоит в вашем исследовании. 2. По второму столбцу Табл. (Классификация задач и методов их решения) определить, каковы условия решения вашей задачи, например, сколько выборок обследовано или на какое количество групп вы можете разделить обследованную выборку. 3. Обратиться к соответствующей главе и по алгоритму принятия решения о выборе критерия, приведенного в конце каждой главы, определить, какой именно метод или критерий вам целесообразно использовать.

 

 

АЛГОРИТМ 2

Принятие решения о задаче и методе обработки на стадии планирования исследования

1. Определите, какая модель вам кажется наиболее подходящей для доказательства ваших научных предположений.

2. Внимательно ознакомьтесь с описанием метода, примерами и задачами для самостоятельного решения, которые к нему прилагаются.

3. Если вы убедились, что это то, что вам нужно, вернитесь к разделу «Ограничения критерия» и решите, сможете ли вы собрать данные, которые будут отвечать этим ограничениям (большие объемы выборок, наличие не­скольких выборок, монотонно различающихся по какому-либо признаку, напри­мер, по возрасту и т.п.).

4. Проводите исследование, а затем обрабатывайте полученные данные по заранее! выбранному алгоритму, если вам удалось выполнить ограничения.

5. Если ограничения выполнить не удалось, обратитесь к алгоритму 1.


Алгоритм принятия решения о выборе критерия для сопоставлений

 


Q - критерий Розенбаума

Назначение критерия. Критерий используется для оценки различий между двумявы­борками по уровнюкакого-либо признака, количественно измеренного. В каждой из выборок должно быть не менее 11 испытуемых.

 

Пример.

У предполагаемых участников психологического эксперимента, моделирующего деятельность воздушного диспетчера, был измерен уро­вень вербального и невербального интеллекта с помощью методики Д. Векслера. Было обследовано 26 юношей в возрасте от 18 до 24 лет (средний возраст 20,5 лет). 14 из них были студентами физического факультета, а 12 - студентами психологического факультета Ленинград­ского университета. Можно ли утверждать, что одна из групп превосходит другую по уровню вербального интеллекта?

 

АЛГОРИТМ 3 Подсчет критерия Q Розенбаума 1. Проверить, выполняются ли ограничения: n1,n2 ≥11, n1,n2≈n2. 2. Упорядочить значения отдельно в каждой выборке по степени воз­растания признака. Считать выборкой 1 ту выборку, значения в ко­торой предположительно выше, а выборкой 2 - ту, где значения предположительно ниже. 3. Определить самое высокое (максимальное) значение в выборке 2. 4. Подсчитать количество значений в выборке 1, которые выше макси­мального значения в выборке 2. Обозначить полученную величину как S1. 5. Определить самое низкое (минимальное) значение в выборке 1. 6. Подсчитать количество значений в выборке 2, которые ниже мини­мального значения выборки 1. Обозначить полученную величину как S2. 7. Подсчитать эмпирическое значение Q по формуле: Q=S1+S2 8. По Табл. I определить критические значения Q для данных n1 и n2. Если Qэмп равно Q0,05 или превышает его, уровень признака в выборке 1 превышает уровень признака в вы­борке 2. 9. При n1 и n2 >26сопоставить полученное эмпирическое значение с Qкp = 8 (р≤ 0,05) и Qкp = 10 (p≤ 0,01). Если Qэмп ≥ Qкp = 8, уровень признака в выборке 1 превышает уровень признака в вы­борке 2.

Таблица I. Критические значения критерия Q Розенбаума

для уровней статистической значимости р≤0,05 и р≤0,01.

 

n                                
p=0,05
                                 
                                 
                                 
                                 
                                 
                                 
                                 
                                 
                                 
                                 
                                 
                        7        
                                 
                                 
                                 
                                 
p=0,01
                                 
                                 
                                 
                                 
                                 
                                 
                                 
                                 
                                 
                                 
                                 
                                 
                                 
                                 
                                 
                                 

U - критерий Манна-Уитни

Назначение критерия. Критерий предназначен для оценки различий между двумя вы­борками по уровню какого-либо признака, количественно измеренного. Он позволяет выявлять различия между малыми выборками, когда n1,n2 3 или n1=2, n2≥5, и является более мощным, чем критерий Ро­зенбаума.

Пример

Уровень вербального интеллекта в выборке студентов физического факультета выше чем студентов психологического факультета Ленинградского университета. Попытаемся установить теперь, воспроизводится ли этот резуль­тат при сопоставлении выборок по уровню невербального интеллекта. Можно ли утверждать, что одна из выборок превосходит другую по уровню невербального интеллекта?

 

Правила ранжирования

1. Меньшему значению начисляется меньший ранг. Наименьшему значению начисляется ранг 1. Наибольшему значению начисляется ранг, соответствующий количе­ству ранжируемых значений. Например, если n=7, то наибольшее значение получит ранг 7, за возможным исключением для тех слу­чаев, которые предусмотрены правилом 2.

2. В случае, если несколько значений равны, им начисляется ранг, представляющий собой среднее значение из тех рангов, которые они получили бы, если бы не были равны.

Допустим, следующие 2 значения равны 12 сек. Они должны были бы получить ранги 4 и 5, но, поскольку они равны, то получают средний ранг:

3. Общая сумма рангов должна совпадать с расчетной, которая опре­деляется по формуле:

где N - общее количество ранжируемых наблюдений (значений). Несовпадение реальной и расчетной сумм рангов будет свидетельст­вовать об ошибке, допущенной при начислении рангов или их сум­мировании. Прежде чем продолжить работу, необходимо найти ошибку и устранить ее.

 

АЛГОРИТМ 4

Подсчет критерия U Манна-Уитни.

1. Перенести все данные испытуемых на индивидуальные карточки.

2. Пометить карточки испытуемых выборки 1 одним цветом, скажем красным, а все карточки из выборки 2 - другим, например синим.

3. Разложить все карточки в единый ряд по степени нарастания при­знака, не считаясь с тем, к какой выборке они относятся, как если бы мы работали с одной большой выборкой.

4. Проранжировать значения на карточках, приписывая меньшему зна­чению меньший ранг. Всего рангов получится столько, сколько у нас (n1+п2).

5. Вновь разложить карточки на две группы, ориентируясь на цветные обозначения: красные карточки в один ряд, синие - в другой.

6. Подсчитать сумму рангов отдельно на красных карточках (выборка 1) и на синих карточках (выборка 2). Проверить, совпадает ли об­щая сумма рангов с расчетной.

7. Определить большую из двух ранговых сумм.

8. Определить значение U по формуле:

где n1 - количество испытуемых в выборке 1;

n2 - количество испытуемых в выборке 2;

Тх - большая из двух ранговых сумм;

nх - количество испытуемых в группе с большей суммой рангов.

9. Определить критические значения U по Табл. II. Если Uэмп Uкp_005, различия достоверны. Чем меньше значения U, тем достоверность различий выше.


Таблица II. Критические значения критерия U Манна-Уитни

для уровней статистической значимости р≤0,05 и р≤0,01.

 

n1                                      
n2 p=0,05
  -                                    
  -                                    
                                       
                                       
                                       
                                       
                                       
                                       
                                       
                                       
                                       
                                       
                                       
                                       
                                       
                                       
                                       
                                       
p=0,01
  - -                                  
  - -                                  
  -                                    
  -                                    
  -                                    
  -                                    
  -                                    
  -                                    
                                       
                                       
                                       
                                       
                                       
                                       
                                       
                                       

 


Таблица II. Продолжение

 

n1                                    
n2 p=0,05
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
р=0,01
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     

Таблица II. Продолжение

 

n1                                      
n2 p=0 05
                                       
                                       
                                       
                                       
                                       
                                       
                                       
                                       
                                       
                                       
                                       
                                       
                                       
                                       
                                       
                                       
          &n
Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...