1.7. Точечные и интервальные оценки параметров
Оценкой параметра Q называют всякую функцию от результатов над n наблюдениями СВ Х, посредством которой судят о значении параметра Q. Оценку называют также статистикой. Если Q - величина детерминированная, то ее оценка - случайная величина, которая в смысле качества оценивания может быть лучше или хуже. Качество оценивания определяется по трем критериям: несмещенность, состоятельность, эффективность. Оценка параметра Q называется несмещенной, если ее МО равно параметру Q:
Требование несмещенности гарантирует отсутствие систематических ошибок при оценивании. Оценка параметра Q называется состоятельной, если она удовлетворяет закону больших чисел, т. е. сходится по вероятности к Q:
Как видно, с увеличением объема n выборки значительные ошибки оценивания становятся все менее вероятными. Оценка параметра Q называется эффективной, если она несмещенная и имеет наименьшую дисперсию среди всех возможных несмещенных оценок, вычисленных по выборкам одного объема n. Эффективность является решающим критерием качества оценивания, поскольку совмещает в себе два критерия. Основным методом получения оценок параметров по данным выборки является метод максимального правдоподобия. Согласно ему в качестве оценки принимается такое ее значение, которое максимизирует функцию правдоподобия L:
Функция L есть плотность вероятности (вероятность) совместного появления данных выборки x1, x2, ... , xn, Получаемая из выражения Arg(L(x1, x2, ... , xn, Q) max) = оценка такова, что имеющиеся у нас наблюдения являются наиболее правдоподобными.
Достоинство метода максимального правдоподобия: получаемые с его помощью оценки состоятельны, асимптотически (при n®¥ ) эффективны и имеют асимптотически (при n®¥ ) нормальный ЗР. Пусть имеется выборка x1, x2, ... , xn, по которой методом максимального правдоподобия оцениваются параметры распределения СВ Х. Тогда: выборочная средняя = å nixi/n, выборочная дисперсия s2 = å ni(xi - )2/n, выборочная доля w=m/n. Здесь и w - несмещенные, состоятельные и эффективные (для нормально распределенной генеральной совокупности) оценки для МО а и вероятности р, а s2 - смещенная, но состоятельная оценка дисперсии s2. Обычно в качестве оценки используется исправленная выборочная дисперсия, которая является несмещенной и состоятельной оценкой дисперсии s2.
.
Мы рассмотрели точечные оценки параметров. Помимо них существуют интервальные оценки. Интервальной оценкой параметра Q называется интервал ( , ), который с заданной вероятностью g накрывает неизвестное значение параметра Q. Интервал ( , ) называется доверительным, а вероятность g - доверительной вероятностью (надежностью) оценки. Величина доверительного интервала уменьшается с ростом объема выборки n и растет с ростом доверительной вероятности g. Пример построения доверительного интервала. Пусть x1, x2, ... , xn, -выборка, полученная случайным отбором с повтором из генеральной совокупности с НЗР. Пусть и - средние выборочная и генеральная, s - выборочное СКО, - СКО выборочной средней. Поскольку статистика ( - )/ = ( - ) имеет t-распределение Стьюдента с n-1 степенями свободы, доверительный интервал для генеральной средней с доверительной вероятностью g будет таким:
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|