Мышечные релаксанты. А. У. Лекманов
МЫШЕЧНЫЕ РЕЛАКСАНТЫ А. У. Лекманов
НЕЙРОМЫШЕЧНОЕ ПРОВЕДЕНИЕ
Типичный моторный нейрон состоит из тела клетки с легко различимым ядром, множества дендритов и одиночного миелинизированного аксона. Аксоны от других нейронов сходятся на дендритах и теле клетки. Эти аксонодендритные и аксоносоматические синапсы и обеспечивают пре- и постсинаптическое торможение и пресинаптическое облегчение. В зоне нервно-мышечного синапса аксон теряет свою миелиновую оболочку и приобретает вид характерных выпячиваний. Аксоплазма этих выпячиваний содержит вакуоли, наполненные медиатором нервно-мышечного проведения — ацетилхолином (АХ). Для синтеза АХ необходимы холин и ацетат. Они попадают в аксоплазму из омывающей экстрациллюлярной жидкости и затем хранятся в мигоховдриях в виде АцетилкоэнзимаА (АкоА). Другие молекулы, используемые для синтеза и хранения АХ, синтезируются в теле клетки и транспортируются к окончанию нерва. Главным ферментом, катализирующим синтез АХ в окончании нерва, является холин-0-ацетилтрансфераза. АХ остается в цитоплазме до тех пор, пока не попадает в вакуоли и не транспортируется в места выброса. Назначение АХ, оставшегося в цитоплазме клеток, до настоящего времени не вьмснено. Вакуоли располагаются в треугольных массивах, вершина которых включает утолщенную часть мембраны, известную как «активная зона». Места «разгрузки» вакуолей находятся на любой стороне этих активных зон, выравниваемых точно по противоположным «плечам» — изогнутостям на постсинаптической мембране. Постсинапгические рецепторы сконцентрированы как раз на этих «плечах». Современное понимание физиологии нервно-мышечной передачи подтверждает «квантовую теорию». В ответ на потенциал действия нерва реагирующие на напряжение кальциевые каналы открываются, и ионы Са++ быстро входят в окончание нерва, соединяясь с кальмодулином. Комплекс Са++ и кальмодулина вызывает взаимодействие везикул с мембраной окончания нерва, что, в свою очередь, приводит к выбросу АХ в синапс. Количество выброшенного посредника определяется концентрацией внутриклеточного Са++ и временем открытия кальциевых каналов. «Неквантовый» выброс Са++ также имеет место, однако его роль не вполне ясна.
Быстрая смена возбуждения требует, чтобы нерв увеличил количество АХ, — процесс, известный как мобилизация. Мобилизация включает транспорт холина, синтез АкоА и движения вакуолей к месту выпуска. При нормальных условиях нервы способны мобилизовать посредник (в данном случае — ацетилхолин) достаточно быстро, чтобы заменить тот, который был реализован в результате предыдущей передачи. В присутствии d-тубокурарина (d-TK) мобилизация передатчика замедлена, выброс ацетилхолина не в состоянии обеспечить темп поступаемых команд (стимулов), в результате мышечный ответ падает или прекращается. Освобожденный АХ пересекает синапс и связывается с никотиновыми рецепторами постсинаптической мембраны. Эти рецепторы состоят из пяти субъединиц, две из которых идентифицированы и содержат места связывания для АХ. Образование комплекса АХ и рецептора приводит к конформационным изменениям ассоциированного специфического белка, в результате чего открываются катионные каналы. Ионы Na+ и Са++ двигаются внутрь, а ионы K+ из клетки, возникает электрический потенциал, который передается на соседнюю мышечную клетку. Если этот потенциал превышает необходимый порог для смежного мускула, возникает потенциал действия, который проходит через мембрану мускула и инициализирует процесс сокращения. Величина сокращения мускула не зависит от возбуждения нерва и величины потенциала действия (являясь процессом, известным как «все или ничего»), но зависит от количества мышечных волокон, вовлеченных в процесс сокращения. В норме количество выбрасываемого АХ и постсинаптических рецепторов значительно превышает порог, необходимый для мышечного сокращения.
Реполяризация мембраны происходит после разрушения комплекса рецептора с АХ и биодеградацией последнего под влиянием ацетилхолинэстеразы, которая постоянно присутствует в синапсе.
КЛАССИФИКАЦИЯ МЫШЕЧНЫХ РЕЛАКСАНТОВ Хорошо известно, что все мышечные релаксанты подразделяются на две большие группы в зависимости от механизма их действия: деполяризующие и недополяризующие (конкурентные). Механизм действия недеполяризующих (антидеполяризующих) мышечных релаксантов связан с конкуренцией между последними и АХ за специфические рецепторы (поэтому они еще называются конкурентными). Вследствие этого резко снижается чувствительность постсинаптической мембраны к воздействию ацетилхолина. В результате действия конкурентных релаксантов на нервно-мышечный синапс его постсинаптическая мембрана, находящаяся в состоянии поляризации, теряет способность переходить в состояние деполяризации, и, соответственно, мышечное волокно теряет способность к сокращению. Именно поэтому эти препараты и называются недеполяризующими. Прекращение нейромышечной блокады, вызванной антидеполяризующими блокаторами, может быть облегчено при использовании антихолинэстеразных препаратов (неостигмин, прозерин): нарушается обычный процесс биодеградации АХ, концентрация его в синапсе резко возрастает, и в итоге он конкурентно вытесняет релаксант из его связи с рецептором. Следует помнить, однако, что время действия ангихолинэстеразных препаратов ограничено, и если конец их действия наступает до разрушения и выведения мышечного релаксанта, возможно повторное развитие нервно-мышечного блока, — ситуация, известная клиницистам как рекураризация. Миопаралитический эффект деполяризующих мышечных релаксантов (сукценилхолин, листенон, дигилин, миорелаксин) связан с тем, что они действуют на постсинапгическую мембрану подобно ацетилхолину, вызывая его деполяризацию и стимуляцию мышечного волокна. Однако вследствие того что они не удаляются немедленно с рецептора и блокируют доступ ацетилхолина к рецепторам, резко снижается чувствительность концевой пластинки к ацетилхолину. Более того, относительно устойчивая деполяризация, которую вызывают деполяризующие мышечные релаксанты, недостаточна для сохранения мышцы в сокращенном состоянии, так что мышца остается расслабленной.
Понятно, что использование антихолинэстеразных препаратов в качестве антидотов деполяризующих мышечных блокаторов будет не эффективно, так как накапливающийся ацетилхолин будет только усиливать деполяризацию и, следовательно, усугублять, а не уменьшать степень нейромышечной блокады. Интересно, что во всех случаях даже однократного введения деполяризующих релаксантов, не говоря уже о введении повторных доз, на постсинаптической мембране обнаруживаются в той или иной степени изменения, когда исходная деполяризующая блокада сопровождается блокадой недеполяризующего типа. Это так называемая вторая фаза действия («двойной блок») деполяризующих релаксантов. Механизм второй фазы действия до настоящего времени не известен. Однако ясно, что вторая фаза действия может в последующем устраняться антихолинэстеразными препаратами и усугубляться недеполяризующими мышечными релаксантами. Помимо изложенной классификации, Savarese J. (1970) предложил все мышечные релаксанты разделять в зависимости от длительности вызываемого ими нейромышечного блока: ультракороткого действия — менее 5—7 мин, короткого действия — менее 20 мин, средней длительности — менее 40 мин и длительного действия — более 40 мин (табл. 13. 1).
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|