Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Мышечные релаксанты. А. У. Лекманов




МЫШЕЧНЫЕ РЕЛАКСАНТЫ

А. У. Лекманов

 

НЕЙРОМЫШЕЧНОЕ ПРОВЕДЕНИЕ

 

Типичный моторный нейрон состоит из тела клетки с легко различимым ядром, множества дендритов и одиночного миелинизированного аксона. Аксоны от других нейронов сходятся на дендритах и теле клетки. Эти аксонодендритные и аксоносоматические синапсы и обеспечивают пре- и постсинаптическое торможение и пресинаптическое облегчение. В зоне нервно-мышечного синапса аксон теряет свою миелиновую оболочку и приобретает вид характерных выпячиваний. Аксоплазма этих выпячиваний содержит вакуоли, наполненные медиатором нер­вно-мышечного проведения — ацетилхолином (АХ).

Для синтеза АХ необходимы холин и ацетат. Они попадают в аксоплазму из омывающей экстрациллюлярной жидкости и затем хранятся в мигоховдриях в виде АцетилкоэнзимаА (АкоА). Другие молекулы, используемые для синтеза и хранения АХ, синтезируются в теле клетки и транспортируются к окончанию нерва. Главным ферментом, катализирующим синтез АХ в окон­чании нерва, является холин-0-ацетилтрансфераза. АХ остается в цитоплазме до тех пор, пока не попадает в вакуоли и не тран­спортируется в места выброса. Назначение АХ, оставшегося в цитоплазме клеток, до настоящего времени не вьмснено. Вакуоли располагаются в треугольных массивах, вершина кото­рых включает утолщенную часть мембраны, известную как «ак­тивная зона». Места «разгрузки» вакуолей находятся на любой стороне этих активных зон, выравниваемых точно по противо­положным «плечам» — изогнутостям на постсинаптической мембране. Постсинапгические рецепторы сконцентрированы как раз на этих «плечах».

Современное понимание физиологии нервно-мышечной пе­редачи подтверждает «квантовую теорию». В ответ на потенци­ал действия нерва реагирующие на напряжение кальциевые ка­налы открываются, и ионы Са++ быстро входят в окончание нерва, соединяясь с кальмодулином. Комплекс Са++ и кальмодулина вызывает взаимодействие везикул с мембраной окончания нерва, что, в свою очередь, приводит к выбросу АХ в синапс. Количество выброшенного посредника определяется концентра­цией внутриклеточного Са++ и временем открытия кальциевых каналов. «Неквантовый» выброс Са++ также имеет место, одна­ко его роль не вполне ясна.

Быстрая смена возбуждения требует, чтобы нерв увеличил количество АХ, — процесс, известный как мобилизация. Мо­билизация включает транспорт холина, синтез АкоА и движения вакуолей к месту выпуска. При нормальных условиях нервы способны мобилизовать посредник (в данном случае — ацетилхолин) достаточно быстро, чтобы заменить тот, который был реализован в результате предыдущей передачи. В присутствии d-тубокурарина (d-TK) мобилизация передатчика замедлена, выброс ацетилхолина не в состоянии обеспечить темп поступаемых команд (стимулов), в результате мышечный ответ падает или прекращается.

Освобожденный АХ пересекает синапс и связывается с ни­котиновыми рецепторами постсинаптической мембраны. Эти ре­цепторы состоят из пяти субъединиц, две из которых идентифи­цированы и содержат места связывания для АХ. Образование комплекса АХ и рецептора приводит к конформационным изме­нениям ассоциированного специфического белка, в результате чего открываются катионные каналы. Ионы Na+ и Са++ двигают­ся внутрь, а ионы K+ из клетки, возникает электрический по­тенциал, который передается на соседнюю мышечную клетку. Если этот потенциал превышает необходимый порог для смеж­ного мускула, возникает потенциал действия, который проходит через мембрану мускула и инициализирует процесс сокраще­ния. Величина сокращения мускула не зависит от возбуждения нерва и величины потенциала действия (являясь процессом, известным как «все или ничего»), но зависит от количества мышечных волокон, вовлеченных в процесс сокращения. В норме количество выбрасываемого АХ и постсинаптических рецепторов значительно превышает порог, необходимый для мы­шечного сокращения.

Реполяризация мембраны происходит после разрушения комплекса рецептора с АХ и биодеградацией последнего под влиянием ацетилхолинэстеразы, которая постоянно присутствует в синапсе.

 

КЛАССИФИКАЦИЯ МЫШЕЧНЫХ РЕЛАКСАНТОВ

Хорошо известно, что все мышечные релаксанты подраз­деляются на две большие группы в зависимости от механиз­ма их действия: деполяризующие и недополяризующие (конкурентные).

Механизм действия недеполяризующих (антидеполяризующих) мышечных релаксантов связан с конкуренцией меж­ду последними и АХ за специфические рецепторы (поэтому они еще называются конкурентными). Вследствие этого рез­ко снижается чувствительность постсинаптической мембраны к воздействию ацетилхолина. В результате действия конкурентных релаксантов на нервно-мышечный синапс его постсинаптическая мембрана, находящаяся в состоянии поляризации, те­ряет способность переходить в состояние деполяризации, и, со­ответственно, мышечное волокно теряет способность к сокращению. Именно поэтому эти препараты и называются недеполяризующими.

Прекращение нейромышечной блокады, вызванной антидеполяризующими блокаторами, может быть облегчено при использовании антихолинэстеразных препаратов (неостигмин, прозерин): нарушается обычный процесс биодеградации АХ, концентрация его в синапсе резко возрастает, и в итоге он кон­курентно вытесняет релаксант из его связи с рецептором. Сле­дует помнить, однако, что время действия ангихолинэстеразных препаратов ограничено, и если конец их действия наступает до разрушения и выведения мышечного релаксанта, возможно повторное развитие нервно-мышечного блока, — ситуация, изве­стная клиницистам как рекураризация.

Миопаралитический эффект деполяризующих мышечных релаксантов (сукценилхолин, листенон, дигилин, миорелаксин) связан с тем, что они действуют на постсинапгическую мем­брану подобно ацетилхолину, вызывая его деполяризацию и сти­муляцию мышечного волокна. Однако вследствие того что они не удаляются немедленно с рецептора и блокируют доступ ацетилхолина к рецепторам, резко снижается чувствительность кон­цевой пластинки к ацетилхолину. Более того, относительно ус­тойчивая деполяризация, которую вызывают деполяризующие мышечные релаксанты, недостаточна для сохранения мышцы в сокращенном состоянии, так что мышца остается расслабленной.

Понятно, что использование антихолинэстеразных препа­ратов в качестве антидотов деполяризующих мышечных блокаторов будет не эффективно, так как накапливающийся ацетилхолин будет только усиливать деполяризацию и, следова­тельно, усугублять, а не уменьшать степень нейромышечной блокады.

Интересно, что во всех случаях даже однократного введе­ния деполяризующих релаксантов, не говоря уже о введении повторных доз, на постсинаптической мембране обнаруживают­ся в той или иной степени изменения, когда исходная деполяризующая блокада сопровождается блокадой недеполяризующего типа.

Это так называемая вторая фаза действия («двойной блок») деполяризующих релаксантов. Механизм второй фазы дейст­вия до настоящего времени не известен. Однако ясно, что вто­рая фаза действия может в последующем устраняться антихолинэстеразными препаратами и усугубляться недеполяризующими мышечными релаксантами.

Помимо изложенной классификации, Savarese J. (1970) предложил все мышечные релаксанты разделять в зависимо­сти от длительности вызываемого ими нейромышечного блока:

ультракороткого действия — менее 5—7 мин, короткого дейст­вия — менее 20 мин, средней длительности — менее 40 мин и длительного действия — более 40 мин (табл. 13. 1).

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...