Использование интерполяции на практике
Интерполяция с помощью многочлена Лагранжа Задание: найти приближенное значение функции при данном значении аргумента с помощью интерполяционного многочлена Лагранжа, если функция задана в неравносторонних узлах таблицы. Дана функция:
Составляем таблицу узлов интерполяции: Поскольку n=5 строим интерполяционный многочлен L5 (x):
L5 (x) =P50*f (x0) +P51*f (x1) + P52*f (x2) + P53*f (x3) + P54*f (x4) + P55*f (x5)
В результате получаем многочлен:
L5 (x) = 1.049*10-3*x5+5.4373*10-3*x4 +0.027*x3 - 0,936*x2 + 0,424*x +0.42278, X= - 0.48051
Подставляя заданное значение аргумента, получаем ответ:
L5 (x) = 0,00011
При подстановки того аргумента в заданную функцию, получаем такой же результат:
f (-0.48051) =0.00011
Обратная интерполяция
Задание: найти приближенное значение корня данном значении функции с помощью интерполяционного многочлена Лагранжа, если функция задана в равносторонних узлах таблицы. Дана функция:
Составляем таблицу узлов интерполяции:
Поскольку n=4 строим интерполяционный многочлен L4 (y):
L4 (y) =P40*x0+P41*x1+ P42*x2+ P43*x3+ P44*x4
В результате получаем многочлен:
L4 (y) = 7.99*y4-0.8176*y3 - 0.4932* y2 +0.9008*y - 0.4759 y= 0
Подставляя заданное значение функции, получаем ответ:
L4 (y) = - 0.47591
Таким образом, получаем приближенное значение корня:
X= - 0.47591
При подстановки этого аргумента в заданную функцию, получаем результат:
f (-0,47591) = 0.00625 Интерполяция сплайнами Задание: На участке [b,b+2] выбрать 3 точки (b,b+1,b+2), построить два сплайна на двух отрезках, убедиться в том, что в точке b+1 производная не терпит разрыва.
Построим таблицу:
Для построения сплайна используем формулы:
h=
Таким образом, нам необходимо, чтобы вторая производная была непрерывна, т.е. получить сплайн с дефектом 1. Для построения глобального сплайна необходимо, начиная со второго узла поставить условие непрерывности 2-ой производной, т.е.2-ая производная при подходе к точке 2 и дальше слева (x1-0) должна равняться 2-ой производной при подходе справа (x1+0):
Приравнивая эти значения, получаем:
Для нашей функции получаем:
0.42435 - 2.10346
После того, как мы нашли m1, можем построить графики (рисунок 3.2).
Рисунок 3.2 - Глобальная интерполяция сплайнами
Также можно сравнить с графиком самой функции (рисунок 3.3).
Рисунок 3.3 - Сравнение графика функции и глобальной интерполяции
Программа для использования интерполяции
На рисунках 3.4 представлена программа для использования интерполяции сплайнами. Пользователь вводит необходимые данные и при нажатии кнопки "График" строится кубический сплайн. Листинг программы представлен в приложении В.
Рисунок 3.4 - Программа для использования интерполяции сплайнами
Итерационные методы решения систем линейных алгебраических уравнений
Общие сведения
К численным методам линейной алгебры относятся численные методы решения систем линейных алгебраических уравнений. Методы решения СЛАУ разбиваются на две группы. К первой группе принадлежат так называемые точные или прямые методы - алгоритм, позволяющий получить решение системы за конечное число арифметических действий. Вторую группу составляют приближенные методы, в частности итерационные методы решения СЛАУ.
Метод простой итерации
Описание метода Рассмотрим СЛАУ вида Ax = B, где А - матрица. (1)
A = {aij}i, j = 1…n B = {bi}x = {xi}
Если эту систему удалось привести к виду x = Cx + D, то можно построить итерационную процедуру
xk = Cxk-1 + D
xk → x*, где х* - решение заданной системы. В конечном варианте система будет имееть вид:
x1=c11x1+c12x2+c13x3+…c1nxn+d1 x2=c21x1+c22x2+c23x3+…c2nxn+d1 x3=c31x1+c32x2+c33x3+…c1nxn+d3 ………………………………………….. xn=cn1x1+cn2x2+cn3x3+…cnnxn+dn
Условием сходимости для матрицы С выполняется, если сумма модулей коэффициентов меньше единицы по строкам или по столбцам, т.е.
, или .
Необходимо, чтобы диагональные элементы матрицы А были ненулевыми. Для преобразования системы можно выполнить следующие операции:
x1=a11-1 (c1-a12x2 - a13x3-… - a1nxn) x2=a22-1 (c2-a21x2 - a23x3-… - a2nxn) ……………………….. xn=ann-1 (cn-an1x2 - an3x3-… - an-1nxn-1) В результате получим систему: x1=0+ c12x2+ c13x3-…+ c1n-1xn-1+ c1nxn+d1 x2= c21x2+0 +c23x3+…+ c2n-1xn-1+ c2nxn+d2 ……………………………………………………….. xn= cn1x1+ cn2x2 +cn3x3+…+ cnn-1xn-1+ 0+dn
В ней на главной диагонали матрицы С находятся нулевые элементы, остальные элементы выражаются по формулам:
сij=-aij/aii, di=ci/aii (i,j=1,2,3…n, i<>j)
Итерационный процесс продолжается до тех пор, пока значения х1 (k), х2 (k), х3 (k) не станут близкими с заданной погрешностью к значениям х1 (k-1), х2 (k-1), х3 (k-1).
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|