Решение СЛАУ методом простых итераций
Решить СЛАУ методом простых итераций с точностью .
Для удобства преобразуем систему к виду:
Условие сходимости:
,
Принимаем приближение на 0-ом шаге:
, ,
На 1-м шаге выполняем следующее: Подставляем принятые приближения в первоначальную систему уравнений
Смотрим не выполняется ли условие остановки итерационного процесса:
:
На 2-м шаге выполняем следующее:
Смотрим не выполняется ли условие остановки итерационного процесса
:
На 3-м шаге выполняем следующее:
Смотрим не выполняется ли условие остановки итерационного процесса
:
На 4-м шаге выполняем следующее:
Смотрим не выполняется ли условие остановки итерационного процесса
:
На 5-м шаге выполняем следующее:
Смотрим не выполняется ли условие остановки итерационного процесса:
:
На 6-м шаге выполняем следующее:
Смотрим не выполняется ли условие остановки итерационного процесса:
:
Необходимая точность достигнута на 6-й итерации. Таким образом, итерационный процесс можно прекратить.
Программа для решения СЛАУ методом простых итераций На рисунке 4.1 представлена программа для решения систем алгебраических линейных уравнений методом простых итераций. Листинг программы приведен в приложении Г.
Рисунок 4.1 - Программа "Метод простых итераций"
Метод Зейделя
Описание метода В этом методе результаты, полученные на k-том шаге, используются на этом же шаге. На (k+1) - й итерации компоненты приближения вычисляются по формулам:
………………………………………….
Этот метод применим к система уравнений в виде Ax=B при условии, что диагональный элемент матрицы коэффициентов A по модулю должен быть больше, чем сумма модулей остальных элементов соответствующей строки (столбца). Если данное условие выполнено, необходимо проследить, чтобы система была приведена к виду, удовлетворяющему решению методом простой итерации и выполнялось необходимое условие сходимости метода итераций:
, либо Решение СЛАУ методом Зейделя Решить СЛАУ методом Зейделя с точностью .
Эту систему можно записать в виде:
В этой системе сразу видно, что выполняется условие, где диагональные элементы матрицы коэффициентов по модулю больше, чем сумма модулей остальных элементов соответствующей строки. Для удобства преобразуем систему к виду:
Условие сходимости:
,
Принимаем приближение на 0-ом шаге:
На 1-м шаге выполняем следующее: Подставляем принятые приближения в первоначальную систему уравнений
Смотрим не выполняется ли условие остановки итерационного процесса
:
На 2-м шаге выполняем следующее:
Смотрим не выполняется ли условие остановки итерационного процесса
:
На 3-м шаге выполняем следующее:
Смотрим не выполняется ли условие остановки итерационного процесса:
:
На 4-м шаге выполняем следующее:
Смотрим не выполняется ли условие остановки итерационного процесса
:
Необходимая точность достигнута на 4-й итерации. Таким образом, итерационный процесс можно прекратить.
Программа дл решения СЛАУ методом Зейделя На рисунке 4.2 представлена программа для решения систем алгебраических линейных уравнений методом простых итераций.
Листинг программы приведен в приложении Г.
Рисунок 4.2 - Программа "Метод Зейделя"
Сравнительный анализ
Можно заметить, что в методе Зейделя быстрее мы достигаемой нужной точности, в нашем случае в точность была достигнута на 4-й итерации, когда в методе простых итераций она была достигнута на 6-й итерации. Но в то же время в методе Зейделя ставится больше условий. Поэтому вначале нужно произвести иногда довольно трудоемкие преобразования. В таблице 4.1 приведены результаты решения СЛАУ методом простой итерации и методом Зейделя на различных шагах итерации:
Таблица 4.1 - Результаты решения СЛАУ
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|