Д.Гильберт
< …> История учит, что развитие науки протекает непрерывно. Мы знаем, что каждый век имеет свои проблемы, которые последующая эпоха или решает, или отодвигает в сторону как бесплодные, чтобы заменить их новыми. Чтобы представить себе возможный характер развития математического знания в ближайшем будущем, мы должны перебрать в нашем воображении вопросы, которые еще остаются открытыми, обозреть проблемы, которые ставит современная наука, и решения которых мы ждем от будущего. Такой обзор проблем кажется мне сегодня, на рубеже нового столетия, особенно своевременным. Ведь большие даты не только заставляют нас оглянуться на прошедшее, но и направляют нашу мысль в неизвестное будущее. Невозможно отрицать глубокое значение, какое имеют определенные проблемы для продвижения математической науки вообще и ту роль, которую они играют в работе отдельного исследователя. Всякая научная область жизнеспособна, пока в ней избыток новых проблем. Недостаток новых проблем означает отмирание или прекращение самостоятельного развития. Как вообще каждое человеческое начинание связано с той или иной целью, так и математическое творчество связано с постановкой проблем. Сила исследователя познается в решении проблем: он находит новые методы, новые точки зрения, он открывает более широкие и свободные горизонты. < …> возникает вопрос: существуют ли общие признаки, которые характеризуют хорошую математическую проблему? Один старый французский математик сказал: " Математическую теорию можно считать совершенной только тогда, когда ты сделал ее настолько ясной, что берешься изложить ее содержание первому встречному". Это требование ясности и легкой доступности, которое здесь так резко ставится в отношении математической теории, я бы поставил еще резче в отношении математической проблемы, если она претендует на совершенство; ведь ясность и легкая доступность нас привлекают, а усложненность и запутанность отпугивают. Математическая проблема, далее, должна быть настолько трудной, чтобы нас привлекать, и в то же время не совсем недоступной, чтобы не делать безнадежными наши усилия; она должна быть путеводным знаком на запутанных тропах, ведущих к сокрытым истинам; и она затем должна награждать нас радостью найденного решения.
Математики прошлого столетия со страстным рвением отдавались решению отдельных трудных задач; они знали цену трудной задаче. Я напомню только поставленную Иоганном Бернулли задачу о линии быстрейшего падения. " Как показывает опыт, - говорит Бернулли, оповещая о своей задаче, - ничто с такой силой не побуждает высокие умы к работе над обогащением знания, как постановка трудной и в то же время полезной задачи". И поэтому он надеется заслужить благодарность математического мира, если он, - следуя примеру таких мужей, как Мерсенн, Паскаль, Ферма, Вивиани и другие, которые (до него) поступали так же, - предложит задачу выдающимся аналитикам своего времени, чтобы они могли на ней, как на пробном камне, испытать достоинства своих методов и измерить свои силы. Этой задаче Бернулли и другим аналогичным задачам обязано своим зарождением вариационное исчисление. Известно утверждение Ферма о том, что диофантово уравнение xn + yn = zn неразрешимо в целых числах х, у, z, если не считать известных очевидных исключений. Проблема доказательства этой неразрешимости являет разительный пример того, какое побуждающее влияние на науку может оказать специальная и на первый взгляд малозначительная проблема. Ибо, побужденный задачей Ферма, Куммер пришел к введению идеальных чисел и к открытию теоремы об однозначном разложении чисел в круговых полях на идеальные простые множители - теоремы, которая теперь, благодаря обобщениям на любую алгебраическую числовую область, полученным Дедекиндом и Кронекером, является центральной в современной теории чисел и значение которой выходит далеко за пределы теории чисел в область алгебры и теории функций.
Напомню еще об одной интересной проблеме - задаче трех тел. То обстоятельство, что Пуанкаре предпринял новое рассмотрение и значительно продвинул эту трудную задачу, привело к плодотворным методам и далеко идущим принципам, введенным этим ученым в небесную механику, методам и принципам, которые сейчас признаются и применяются также и в практической астрономии. Обе упомянутые проблемы - проблема Ферма и проблема трех тел - являются в нашем запасе проблем как бы противоположными полюсами: первая представляет свободное достижение чистого разума, принадлежащее области абстрактной теории чисел, вторая выдвинута астрономией и необходима для познания простейших основных явлений природы. Часто, однако, случается, что одна и та же специальная проблема появляется в весьма различных областях математики. Так, проблема о кратчайшей линии играет важную историческую и принципиальную роль одновременно в основаниях геометрии, в теории кривых и поверхностей, в механике и в вариационном исчислении. А как убедительно демонстрирует Ф. Клейн в своей книге об икосаэдре, проблема о правильных многогранниках имеет важное значение одновременно для элементарной геометрии, теории групп, теории алгебраических и теории линейных дифференциальных уравнений! Чтобы осветить важность отдельных проблем, я позволю себе еще сослаться на Вейерштрасса, считавшего большой удачей для себя то стечение обстоятельств, которое позволило ему в начале своей научной деятельности заняться такой значительной проблемой, как проблема Якоби об обращении эллиптического интеграла. После того как мы рассмотрели общее значение проблемы в математике, обратимся к вопросу о том, из какого источника математика черпает свои проблемы. Несомненно, что первые и самые старые проблемы каждой математической области знания возникли из опыта и поставлены нам миром внешних явлений. Даже правила счета с целыми числами были открыты на этом пути еще на ранней ступени культурного развития человечества так же, как и теперь ребенок познает применение этих правил эмпирическим методом. То же относится к первым проблемам геометрии - пришедшим к нам из древности задачам удвоения куба, квадратуры круга, а также к старейшим проблемам теории численных уравнений, теории кривых, дифференциального и интегрального исчислений, вариационного исчисления, теории рядов Фурье и теории потенциала, не говоря уже о всем богатстве проблем собственно механики, астрономии и физики. При дальнейшем развитии какой-либо математической дисциплины человеческий ум, обнадеженный удачами, проявляет уже самостоятельность; он сам ставит новые и плодотворные проблемы, часто без заметного влияния внешнего мира, с помощью только логического сопоставления, обобщения, специализирования, удачного расчленения и группировки понятий и выступает затем сам на первый план как постановщик задач. Так возникли задача о простых числах и другие задачи арифметики, теория Галуа, теория алгебраических инвариантов, теория абелевых и автоморфных функций и так возникали вообще почти все тонкие вопросы современной теории чисел и теории функций. А между тем во время действия созидательной силы чистого мышления внешний мир снова настаивает на своих правах: он навязывает нам своими реальными фактами новые вопросы и открывает нам новые области математического знания. И в процессе включения этих новых областей знания в царство чистой мысли мы часто находим ответы на старые нерешенные проблемы и таким путем наилучшим образом продвигаем вперед старые теории. < …>
Остановимся еще кратко на вопросе о том, каковы могут быть общие требования, которые мы вправе предъявить к решению математической проблемы. Я имею в виду прежде всего требования, благодаря которым удается убедиться в правильности ответа с помощью конечного числа заключений и притом на основании конечного числа предпосылок, которые кладутся в основу каждой задачи и которые должны быть в каждом случае точно сформулированы. Это требование логической дедукции с помощью конечного числа заключений есть не что иное, как требование строгости проведения доказательств. Действительно, требование строгости, которое в математике уже вошло в поговорку, соответствует общей философской потребности нашего разума; с другой стороны, только выполнение этого требования приводит к выявлению полного значения существа задачи и ее плодотворности. Новая задача, особенно если она вызвана к жизни явлениями внешнего мира, подобна молодому побегу, который может расти и приносить плоды, лишь если он будет заботливо и по строгим правилам искусства садоводства взращиваться на старом стволе - твердой основе нашего математического знания. Будет большой ошибкой думать при этом, что строгость в доказательстве - это враг простоты. Многочисленные примеры убеждают нас в противоположном: строгие методы являются в то же время простейшими и наиболее доступными. Стремление к строгости как раз и приводит к отысканию простейших доказательств. Это же стремление часто прокладывает путь к методам, которые оказываются более плодотворными, чем старые менее строгие методы. < …>
Предъявляя к полному решению проблемы требование строгости в доказательстве, я хотел бы, с другой стороны, опровергнуть мнение о том, что совершенно строгие рассуждения применимы только к понятиям анализа или даже одной лишь арифметики. Такое мнение, поддерживаемое иногда и выдающимися умами, я считаю совершенно ложным. Такое одностороннее толкование требования строгости быстро приводит к игнорированию всех понятий, возникших из геометрии, механики, физики, приостанавливает приток [в математику - А. Ш. ] нового материала из внешнего мира и, в конце концов, приводит даже к отбрасыванию понятия континуума и иррационального числа. А существует ли более важный жизненный нерв, чем тот, который был бы отрезан от математики, если из нее изъять геометрию и математическую физику? Я, напротив, считаю, что всякий раз, когда математические понятия зарождаются со стороны теории познания или в геометрии, или в естественнонаучных теориях, перед математикой возникает задача исследовать принципы, лежащие в основе этих понятий, и так обосновать эти понятия с помощью полной и простой системы аксиом, чтобы строгость новых понятий и их применимость к дедукции ни в какой мере не уступала старым арифметическим понятиям.
Сделаем еще несколько замечаний относительно трудностей, которые могут представлять математические проблемы, и о преодолении этих трудностей. Если нам не удается найти решение математической проблемы, то часто причина этого заключается в том, что мы не овладели еще достаточно общей точкой зрения, с которой рассматриваемая проблема представляется лишь отдельным звеном в цепи родственных проблем. Отыскав эту точку зрения, мы часто не только делаем более доступной для исследования данную проблему, но и овладеваем методом, применимым и к родственным проблемам. Примерами могут служить введенное Коши в теорию определенного интеграла интегрирование по криволинейному пути и установление Куммером понятия идеала в теории чисел. Этот путь нахождения общих методов наиболее удобный и надежный, ибо, если ищут общие методы, не имея в виду какую-нибудь определенную задачу, то эти поиски, по большей части, напрасны. При исследовании математических проблем специализация играет, как я полагаю, еще более важную роль, чем обобщение. Возможно, что в большинстве случаев, когда мы напрасно ищем ответа на вопрос, причина нашей неудачи заключается в том, что еще не разрешены или не полностью решены более простые и легкие проблемы, чем данная. Тогда все дело заключается в том, чтобы найти эти более легкие проблемы и осуществить их решение наиболее совершенными средствами, при помощи понятий, поддающихся обобщению. Это правило является одним из самых мощных рычагов для преодоления математических трудностей, и мне кажется, что в большинстве случаев этот рычаг и приводят в действие, подчас бессознательно. Вместе с тем бывает и так, что мы добиваемся ответа при недостаточных предпосылках, или идя в неправильном направлении, и вследствие этого не достигаем цели. Тогда возникает задача доказать неразрешимость данной проблемы при принятых предпосылках и выбранном направлении. Такие доказательства невозможности проводились еще старыми математиками, например, когда они обнаруживали, что отношение гипотенузы равнобедренного прямоугольного треугольника к его катету есть иррациональное число. В новейшей математике доказательства невозможности решений определенных проблем играют выдающуюся роль; там мы констатируем, что такие старые и трудные проблемы, как доказательство аксиомы о параллельных, как квадратура круга или решение уравнения пятой степени в радикалах, получили все же строгое, вполне удовлетворяющее нас решение, хотя и в другом направлении, чем то, которое сначала предполагалось. Этот удивительный факт наряду с другими философскими основаниями создает у нас уверенность, которую разделяет, несомненно, каждый математик, но которую до сих пор никто не подтвердил доказательством, - уверенность в том, что каждая определенная математическая проблема непременно должна быть доступна строгому решению или в том смысле, что удается получить oтвет на поставленный вопрос, или же в том смысле, что будет установлена невозможность ее решения и вместе с тем доказана неизбежность неудачи всех попыток ее решить. < …> Является ли эта аксиома разрешимости каждой данной проблемы характерной особенностью только математического мышления или, быть может, имеет место общий, относящийся к внутренней сущности нашего разума закон, по которому все вопросы, которые он ставит, способны быть им разрешимы? Встречаются ведь в других областях знания старые проблемы, которые были самым удовлетворительным образом и к величайшей пользе науки разрешены путем доказательства невозможности их решения. Я вспоминаю проблему о perpetuum mobile (вечный двигатель). После напрасных попыток конструирования вечного двигателя стали, наоборот, исследовать соотношения, которые должны существовать между силами природы, в предположении, что perpetuum mobile невозможно. И эта постановка обратной задачи привела к открытию закона сохранения энергии, из которой и вытекает невозможность perpetuum mobile в первоначальном понимании его смысла. Это убеждение в разрешимости каждой математической проблемы является для нас большим подспорьем в работе; мы слышим внутри себя постоянный призыв: вот проблема, ищи решение. < …> Неизмеримо множество проблем в математике, и как только одна проблема решена, на ее место всплывают бесчисленные новые проблемы. < …> Гильберт Д. Математические проблемы. Доклад, прочитанный 8 августа 1900г. на II Международном конгрессе математиков в Париже// http: //vivovoco. ibmh. msk. su/VV/PAPERS/NATURE/GILBERT_R. HTM
Вопросы для самоконтроля: 1. Как можно проинтерпретировать тезис автора, что «недостаток новых проблем означает отмирание или прекращение самостоятельного развития»? 2. Можно ли считать решение научных проблем важнейшим критерием оценки деятельности ученого? 3. Какие общие признаки, с точки зрения Гильберта, характеризуют «хорошую» математическую проблему? 4. Какие примеры трудных математических задач приводит автор? Покажите своеобразие каждой из них. 5. Назовите источники математических проблем. 6. Каковы общие требования к решению математических проблем? 7. Имеются ли трудности при решении математических проблем? В чем их причины? 8. В чем смысл аксиомы разрешимости каждой данной проблемы? Может ли этот тезис быть истолкован в более широком смысле?
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|