Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Смешанное произведение векторов. Свойства смешанного произведения. Геометрический смысл.




Выясним геометрический смысл смешанного произведения векторов и .

Отложим векторы и от одной точки и построим параллелепипед на этих векторах как на сторонах.

Обозначим . В этом случае смешанное произведение можно записать как , где - числовая проекция вектора на направление вектора .

Абсолютная величина числовой проекции равна высоте параллелепипеда, построенного на векторах и , так как вектор перпендикулярен и вектору и вектору по определению векторного произведения. А в разделе геометрический смысл векторного произведения мы выяснили, что величина представляет собой площадь параллелограмма, построенного на векторах и . Таким образом, модуль смешанного произведения - это произведение площади основания на высоту параллелепипеда, построенного на векторах и .

Следовательно, абсолютная величина смешанного произведения векторов представляет собой объем параллелепипеда: . В этом заключается геометрический смысл смешанного произведения векторов.

Объем тетраэдра, построенного на векторах и , равен одной шестой объема соответствующего параллелепипеда, таким образом, .

Система координат на плоскости. Связь между прямоугольными и полярными координатами.

Пусть M – произвольная точка плоскости, x, y –её прямоугольные координаты, а

ρ,φ – полярные координаты (рисунок ниже).

Тогда

Пример 1
Прямоугольные координаты точки равны x=4, y=-4. Найти её полярные координаты.

Решение.

Значит

так как точка лежит в четвёртой четверти, то первое значение правильно.
Главное значение φ есть -π/4.

Пример 2
Определить какую линию представляет уравнение

Решение.
Переходя к прямоугольной системе, находим

Простейшие задачи аналитической геометрии на плоскости.

Простейшие задачи аналитической геометрии


Расстояние между двумя точками

где и радиус-векторы точек и .

В координатах:

на прямой

на плоскости

в пространстве


Деление отрезка в данном отношении

В координатах:

на прямой ;

на плоскости , ;

в пространстве , ,

Линия на плоскости. Основные понятия.

Определение. Линия на плоскости – множество точек плоскости, обладающих некоторым только им присущим геометрическим свойством.

Определение. Уравнением линии на плоскости называется такое уравнение с двумя переменными, которому удовлетворяют координаты каждой точки линии и не удовлетворяют координаты любой точки, не лежащей на этой линии.

Определение. Уравнением линии в полярной системе координат называется уравнение , если координаты любой точки, лежащей на этой линии, и только они, удовлетворяют этому уравнению.

Линию на плоскости можно задать параметрическими уравнениями где и – непрерывны по параметру . Чтобы перейти от параметрических уравнений к уравнению вида надо из двух уравнений исключить параметр .

Пример. Какая линия определяется параметрическими уравнениями ?

Решение. Исключая параметр , приходим к уравнению . В силу параметрических уравнений , . Следовательно, данные параметрические уравнения определяют луч – биссектрису I-го координатного угла.

Линию на плоскости можно задать векторным уравнением , где – скалярный переменный параметр. Этому уравнению в системе координат соответствуют два скалярных уравнения .

 

Векторное уравнение и параметрические уравнения линии имеют механический смысл: при перемещении точки на плоскости указанные уравнения называются уравнениями движения, а линия – траекторией точки, параметр при этом есть время.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...